@@ -103,7 +103,7 @@ protected lemma periodic.const_smul [add_monoid α] [group γ] [distrib_mul_acti
103103 periodic (λ x, f (a • x)) (a⁻¹ • c) :=
104104λ x, by simpa only [smul_add, smul_inv_smul] using h (a • x)
105105
106- lemma periodic.const_smul₀ [add_comm_monoid α] [division_ring γ] [module γ α]
106+ lemma periodic.const_smul₀ [add_comm_monoid α] [division_semiring γ] [module γ α]
107107 (h : periodic f c) (a : γ) :
108108 periodic (λ x, f (a • x)) (a⁻¹ • c) :=
109109begin
@@ -112,7 +112,7 @@ begin
112112 simpa only [smul_add, smul_inv_smul₀ ha] using h (a • x),
113113end
114114
115- protected lemma periodic.const_mul [division_ring α] (h : periodic f c) (a : α) :
115+ protected lemma periodic.const_mul [division_semiring α] (h : periodic f c) (a : α) :
116116 periodic (λ x, f (a * x)) (a⁻¹ * c) :=
117117h.const_smul₀ a
118118
@@ -121,29 +121,29 @@ lemma periodic.const_inv_smul [add_monoid α] [group γ] [distrib_mul_action γ
121121 periodic (λ x, f (a⁻¹ • x)) (a • c) :=
122122by simpa only [inv_inv] using h.const_smul a⁻¹
123123
124- lemma periodic.const_inv_smul₀ [add_comm_monoid α] [division_ring γ] [module γ α]
124+ lemma periodic.const_inv_smul₀ [add_comm_monoid α] [division_semiring γ] [module γ α]
125125 (h : periodic f c) (a : γ) :
126126 periodic (λ x, f (a⁻¹ • x)) (a • c) :=
127127by simpa only [inv_inv] using h.const_smul₀ a⁻¹
128128
129- lemma periodic.const_inv_mul [division_ring α] (h : periodic f c) (a : α) :
129+ lemma periodic.const_inv_mul [division_semiring α] (h : periodic f c) (a : α) :
130130 periodic (λ x, f (a⁻¹ * x)) (a * c) :=
131131h.const_inv_smul₀ a
132132
133- lemma periodic.mul_const [division_ring α] (h : periodic f c) (a : α) :
133+ lemma periodic.mul_const [division_semiring α] (h : periodic f c) (a : α) :
134134 periodic (λ x, f (x * a)) (c * a⁻¹) :=
135135h.const_smul₀ $ mul_opposite.op a
136136
137- lemma periodic.mul_const' [division_ring α]
137+ lemma periodic.mul_const' [division_semiring α]
138138 (h : periodic f c) (a : α) :
139139 periodic (λ x, f (x * a)) (c / a) :=
140140by simpa only [div_eq_mul_inv] using h.mul_const a
141141
142- lemma periodic.mul_const_inv [division_ring α] (h : periodic f c) (a : α) :
142+ lemma periodic.mul_const_inv [division_semiring α] (h : periodic f c) (a : α) :
143143 periodic (λ x, f (x * a⁻¹)) (c * a) :=
144144h.const_inv_smul₀ $ mul_opposite.op a
145145
146- lemma periodic.div_const [division_ring α] (h : periodic f c) (a : α) :
146+ lemma periodic.div_const [division_semiring α] (h : periodic f c) (a : α) :
147147 periodic (λ x, f (x / a)) (c * a) :=
148148by simpa only [div_eq_mul_inv] using h.mul_const_inv a
149149
@@ -425,12 +425,12 @@ lemma antiperiodic.const_smul [add_monoid α] [has_neg β] [group γ] [distrib_m
425425 antiperiodic (λ x, f (a • x)) (a⁻¹ • c) :=
426426λ x, by simpa only [smul_add, smul_inv_smul] using h (a • x)
427427
428- lemma antiperiodic.const_smul₀ [add_comm_monoid α] [has_neg β] [division_ring γ] [module γ α]
428+ lemma antiperiodic.const_smul₀ [add_comm_monoid α] [has_neg β] [division_semiring γ] [module γ α]
429429 (h : antiperiodic f c) {a : γ} (ha : a ≠ 0 ) :
430430 antiperiodic (λ x, f (a • x)) (a⁻¹ • c) :=
431431λ x, by simpa only [smul_add, smul_inv_smul₀ ha] using h (a • x)
432432
433- lemma antiperiodic.const_mul [division_ring α] [has_neg β]
433+ lemma antiperiodic.const_mul [division_semiring α] [has_neg β]
434434 (h : antiperiodic f c) {a : α} (ha : a ≠ 0 ) :
435435 antiperiodic (λ x, f (a * x)) (a⁻¹ * c) :=
436436h.const_smul₀ ha
@@ -440,32 +440,33 @@ lemma antiperiodic.const_inv_smul [add_monoid α] [has_neg β] [group γ] [distr
440440 antiperiodic (λ x, f (a⁻¹ • x)) (a • c) :=
441441by simpa only [inv_inv] using h.const_smul a⁻¹
442442
443- lemma antiperiodic.const_inv_smul₀ [add_comm_monoid α] [has_neg β] [division_ring γ] [module γ α]
443+ lemma antiperiodic.const_inv_smul₀
444+ [add_comm_monoid α] [has_neg β] [division_semiring γ] [module γ α]
444445 (h : antiperiodic f c) {a : γ} (ha : a ≠ 0 ) :
445446 antiperiodic (λ x, f (a⁻¹ • x)) (a • c) :=
446447by simpa only [inv_inv] using h.const_smul₀ (inv_ne_zero ha)
447448
448- lemma antiperiodic.const_inv_mul [division_ring α] [has_neg β]
449+ lemma antiperiodic.const_inv_mul [division_semiring α] [has_neg β]
449450 (h : antiperiodic f c) {a : α} (ha : a ≠ 0 ) :
450451 antiperiodic (λ x, f (a⁻¹ * x)) (a * c) :=
451452h.const_inv_smul₀ ha
452453
453- lemma antiperiodic.mul_const [division_ring α] [has_neg β]
454+ lemma antiperiodic.mul_const [division_semiring α] [has_neg β]
454455 (h : antiperiodic f c) {a : α} (ha : a ≠ 0 ) :
455456 antiperiodic (λ x, f (x * a)) (c * a⁻¹) :=
456457h.const_smul₀ $ (mul_opposite.op_ne_zero_iff a).mpr ha
457458
458- lemma antiperiodic.mul_const' [division_ring α] [has_neg β]
459+ lemma antiperiodic.mul_const' [division_semiring α] [has_neg β]
459460 (h : antiperiodic f c) {a : α} (ha : a ≠ 0 ) :
460461 antiperiodic (λ x, f (x * a)) (c / a) :=
461462by simpa only [div_eq_mul_inv] using h.mul_const ha
462463
463- lemma antiperiodic.mul_const_inv [division_ring α] [has_neg β]
464+ lemma antiperiodic.mul_const_inv [division_semiring α] [has_neg β]
464465 (h : antiperiodic f c) {a : α} (ha : a ≠ 0 ) :
465466 antiperiodic (λ x, f (x * a⁻¹)) (c * a) :=
466467h.const_inv_smul₀ $ (mul_opposite.op_ne_zero_iff a).mpr ha
467468
468- protected lemma antiperiodic.div_inv [division_ring α] [has_neg β]
469+ protected lemma antiperiodic.div_inv [division_semiring α] [has_neg β]
469470 (h : antiperiodic f c) {a : α} (ha : a ≠ 0 ) :
470471 antiperiodic (λ x, f (x / a)) (c * a) :=
471472by simpa only [div_eq_mul_inv] using h.mul_const_inv ha
0 commit comments