-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Pendse (2011) LASSO implementation for given lambda.
- Loading branch information
Showing
1 changed file
with
187 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
function z = solveLasso( y, X, lambda ) | ||
%========================================================================== | ||
% | ||
% AUTHOR: GAUTAM V. PENDSE | ||
% DATE: 11 March 2011 | ||
% | ||
%========================================================================== | ||
% | ||
%========================================================================== | ||
% | ||
% PURPOSE: | ||
% | ||
% Algorithm for solving the Lasso problem: | ||
% | ||
% 0.5 * (y - X*beta)'*(y - X*beta) + lambda * ||beta||_1 | ||
% | ||
% where ||beta||_1 is the L_1 norm i.e., ||beta||_1 = sum(abs( beta )) | ||
% | ||
% We use the method proposed by Fu et. al based on single co-ordinate | ||
% descent. For more details see GP's notes or the following paper: | ||
% | ||
% Penalized Regressions: The Bridge Versus the Lasso | ||
% Wenjiang J. FU, Journal of Computational and Graphical Statistics, | ||
% Volume 7, Number 3, Pages 397?416, 1998 | ||
% | ||
%========================================================================== | ||
% | ||
%========================================================================== | ||
% | ||
% USAGE: | ||
% | ||
% z = solveLasso( y, X, lambda ) | ||
% | ||
%========================================================================== | ||
% | ||
%========================================================================== | ||
% | ||
% INPUTS: | ||
% | ||
% => y = n by 1 response vector | ||
% | ||
% => X = n by p design matrix | ||
% | ||
% => lambda = regularization parameter for L1 penalty | ||
% | ||
%========================================================================== | ||
% | ||
%========================================================================== | ||
% | ||
% OUTPUTS: | ||
% | ||
% => z.X = supplied design matrix | ||
% | ||
% => z.y = supplied response vector | ||
% | ||
% => z.lambda = supplied regularization parameter for L1 penalty | ||
% | ||
% => z.beta = computed L1 regularized solution | ||
% | ||
%========================================================================== | ||
% | ||
%========================================================================== | ||
% | ||
% Copyright 2011 : Gautam V. Pendse | ||
% | ||
% E-mail : gautam.pendse@gmail.com | ||
% | ||
% URL : http://www.gautampendse.com | ||
% | ||
%========================================================================== | ||
|
||
%========================================================================== | ||
% check input args | ||
|
||
if ( nargin ~= 3 ) | ||
disp('Usage: z = solveLasso( y, X, lambda )'); | ||
z = []; | ||
return; | ||
end | ||
|
||
% check size of y | ||
[n1, p1] = size(y); | ||
|
||
% is y a column vector? | ||
if ( p1 ~= 1 ) | ||
disp('y must be a n by 1 vector!!'); | ||
z = []; | ||
return; | ||
end | ||
|
||
% check size of X | ||
[n2,p2] = size(X); | ||
|
||
% does X have the same number of rows as y? | ||
if ( n2 ~= n1 ) | ||
disp('X must have the same number of rows as y!!!'); | ||
z = []; | ||
return; | ||
end | ||
|
||
% make sure lambda > 0 | ||
if ( lambda < 0 ) | ||
disp('lambda must be >= 0!'); | ||
z = []; | ||
return; | ||
end | ||
|
||
% get size of X | ||
[n, p] = size(X); | ||
|
||
%========================================================================== | ||
|
||
%========================================================================== | ||
% initialize the Lasso solution | ||
|
||
% This assumes that the penalty is lambda * beta'*beta instead of lambda * ||beta||_1 | ||
beta = (X'*X + 2*lambda) \ (X'*y); | ||
|
||
%========================================================================== | ||
|
||
|
||
%========================================================================== | ||
% start while loop | ||
|
||
% convergence flag | ||
found = 0; | ||
|
||
% convergence tolerance | ||
TOL = 1e-6; | ||
|
||
while( found == 0 ) | ||
|
||
% save current beta | ||
beta_old = beta; | ||
|
||
% optimize elements of beta one by one | ||
for i = 1:p | ||
|
||
% optimize element i of beta | ||
|
||
% get ith col of X | ||
xi = X(:,i); | ||
|
||
% get residual excluding ith col | ||
yi = (y - X*beta) + xi*beta(i); | ||
|
||
% calulate xi'*yi and see where it falls | ||
deltai = (xi'*yi); % 1 by 1 scalar | ||
|
||
if ( deltai < -lambda ) | ||
|
||
beta(i) = ( deltai + lambda )/(xi'*xi); | ||
|
||
elseif ( deltai > lambda ) | ||
|
||
beta(i) = ( deltai - lambda )/(xi'*xi); | ||
|
||
else | ||
|
||
beta(i) = 0; | ||
|
||
end | ||
|
||
end | ||
|
||
% check difference between beta and beta_old | ||
if ( max(abs(beta - beta_old)) <= TOL ) | ||
found = 1; | ||
end | ||
|
||
end | ||
|
||
%========================================================================== | ||
|
||
%========================================================================== | ||
% save outputs | ||
|
||
z.X = X; | ||
z.y = y; | ||
z.lambda = lambda; | ||
|
||
z.beta = beta; | ||
|
||
%========================================================================== | ||
|
||
|
||
end |