Skip to content

Commit

Permalink
delete document cache embedding (#2101)
Browse files Browse the repository at this point in the history
Co-authored-by: jyong <jyong@dify.ai>
  • Loading branch information
JohnJyong and JohnJyong authored Jan 19, 2024
1 parent 483dcb6 commit ee9c7e2
Showing 1 changed file with 28 additions and 49 deletions.
77 changes: 28 additions & 49 deletions api/core/embedding/cached_embedding.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,12 @@
import base64
import json
import logging
from typing import List, Optional
from typing import List, Optional, cast

import numpy as np
from core.model_manager import ModelInstance
from core.model_runtime.entities.model_entities import ModelPropertyKey
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from extensions.ext_database import db
from langchain.embeddings.base import Embeddings

Expand All @@ -22,56 +24,33 @@ def __init__(self, model_instance: ModelInstance, user: Optional[str] = None) ->
self._user = user

def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed search docs."""
# use doc embedding cache or store if not exists
text_embeddings = [None for _ in range(len(texts))]
embedding_queue_indices = []
for i, text in enumerate(texts):
hash = helper.generate_text_hash(text)
embedding_cache_key = f'{self._model_instance.provider}_{self._model_instance.model}_{hash}'
embedding = redis_client.get(embedding_cache_key)
if embedding:
redis_client.expire(embedding_cache_key, 3600)
text_embeddings[i] = list(np.frombuffer(base64.b64decode(embedding), dtype="float"))

else:
embedding_queue_indices.append(i)

if embedding_queue_indices:
try:
"""Embed search docs in batches of 10."""
text_embeddings = []
try:
model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
model_schema = model_type_instance.get_model_schema(self._model_instance.model, self._model_instance.credentials)
max_chunks = model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS] \
if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties else 1
for i in range(0, len(texts), max_chunks):
batch_texts = texts[i:i + max_chunks]

embedding_result = self._model_instance.invoke_text_embedding(
texts=[texts[i] for i in embedding_queue_indices],
texts=batch_texts,
user=self._user
)

embedding_results = embedding_result.embeddings
except Exception as ex:
logger.error('Failed to embed documents: ', ex)
raise ex

for i, indice in enumerate(embedding_queue_indices):
hash = helper.generate_text_hash(texts[indice])

try:
embedding_cache_key = f'{self._model_instance.provider}_{self._model_instance.model}_{hash}'
vector = embedding_results[i]
normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
text_embeddings[indice] = normalized_embedding
# encode embedding to base64
embedding_vector = np.array(normalized_embedding)
vector_bytes = embedding_vector.tobytes()
# Transform to Base64
encoded_vector = base64.b64encode(vector_bytes)
# Transform to string
encoded_str = encoded_vector.decode("utf-8")
redis_client.setex(embedding_cache_key, 3600, encoded_str)

except IntegrityError:
db.session.rollback()
continue
except:
logging.exception('Failed to add embedding to redis')
continue
for vector in embedding_result.embeddings:
try:
normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
text_embeddings.append(normalized_embedding)
except IntegrityError:
db.session.rollback()
except Exception as e:
logging.exception('Failed to add embedding to redis')

except Exception as ex:
logger.error('Failed to embed documents: ', ex)
raise ex

return text_embeddings

Expand All @@ -82,7 +61,7 @@ def embed_query(self, text: str) -> List[float]:
embedding_cache_key = f'{self._model_instance.provider}_{self._model_instance.model}_{hash}'
embedding = redis_client.get(embedding_cache_key)
if embedding:
redis_client.expire(embedding_cache_key, 3600)
redis_client.expire(embedding_cache_key, 600)
return list(np.frombuffer(base64.b64decode(embedding), dtype="float"))


Expand All @@ -105,7 +84,7 @@ def embed_query(self, text: str) -> List[float]:
encoded_vector = base64.b64encode(vector_bytes)
# Transform to string
encoded_str = encoded_vector.decode("utf-8")
redis_client.setex(embedding_cache_key, 3600, encoded_str)
redis_client.setex(embedding_cache_key, 600, encoded_str)

except IntegrityError:
db.session.rollback()
Expand Down

0 comments on commit ee9c7e2

Please sign in to comment.