Skip to content

Commit

Permalink
togetherai[patch]: Update API Reference for together AI embeddings mo…
Browse files Browse the repository at this point in the history
…del (#25295)

Issue: #24856
  • Loading branch information
eyurtsev authored Aug 12, 2024
1 parent 1af8456 commit 8626abf
Showing 1 changed file with 63 additions and 6 deletions.
69 changes: 63 additions & 6 deletions libs/partners/together/langchain_together/embeddings.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,17 +35,74 @@


class TogetherEmbeddings(BaseModel, Embeddings):
"""TogetherEmbeddings embedding model.
"""Together embedding model integration.
To use, set the environment variable `TOGETHER_API_KEY` with your API key or
pass it as a named parameter to the constructor.
Setup:
Install ``langchain_together`` and set environment variable
``TOGETHER_API_KEY``.
.. code-block:: bash
pip install -U langchain_together
export TOGETHER_API_KEY="your-api-key"
Key init args — completion params:
model: str
Name of Together model to use.
Key init args — client params:
api_key: Optional[SecretStr]
See full list of supported init args and their descriptions in the params section.
Instantiate:
.. code-block:: python
from __module_name__ import TogetherEmbeddings
embed = TogetherEmbeddings(
model="togethercomputer/m2-bert-80M-8k-retrieval",
# api_key="...",
# other params...
)
Embed single text:
.. code-block:: python
input_text = "The meaning of life is 42"
vector = embed.embed_query(input_text)
print(vector[:3])
Example:
.. code-block:: python
from langchain_together import TogetherEmbeddings
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
Embed multiple texts:
.. code-block:: python
input_texts = ["Document 1...", "Document 2..."]
vectors = embed.embed_documents(input_texts)
print(len(vectors))
# The first 3 coordinates for the first vector
print(vectors[0][:3])
.. code-block:: python
2
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
Async:
.. code-block:: python
vector = await embed.aembed_query(input_text)
print(vector[:3])
# multiple:
# await embed.aembed_documents(input_texts)
.. code-block:: python
model = TogetherEmbeddings()
[-0.009100092574954033, 0.005071679595857859, -0.0029193938244134188]
"""

client: Any = Field(default=None, exclude=True) #: :meta private:
Expand Down

0 comments on commit 8626abf

Please sign in to comment.