A secure environment for running Python code using Pyodide (WebAssembly) and Deno
LangChain Sandbox provides a secure environment for executing untrusted Python code. It leverages Pyodide (Python compiled to WebAssembly) to run Python code in a sandboxed environment.
- 🔒 Security - Isolated execution environment with configurable permissions
- 💻 Local Execution - No remote execution or Docker containers needed
- 🔄 Session Support - Maintain state across multiple code executions
- Latency: There is a few seconds of latency when starting the sandbox per run
- File access: Currently not supported. You will not be able to access the files written by the sandbox.
- Network requests: If you need to make network requests please use
httpx.AsyncClient
instead ofrequests
.
-
Install Deno (required): https://docs.deno.com/runtime/getting_started/installation/
-
Install
langchain-sandbox
:pip install langchain-sandbox
from langchain_sandbox import PyodideSandbox
# Create a sandbox instance
sandbox = PyodideSandbox(
"./sessions", # Directory to store session files
# Allow Pyodide to install python packages that
# might be required.
allow_net=True,
)
code = """\
import numpy as np
x = np.array([1, 2, 3])
print(x)
"""
# Execute Python code
print(await sandbox.execute(code, session_id="123"))
# CodeExecutionResult(
# result=None,
# stdout='[1 2 3]',
# stderr=None,
# status='success',
# execution_time=2.8578367233276367
# )
# Can still access a previous result!
print(await sandbox.execute("float(x[0])", session_id="123"))
# CodeExecutionResult(
# result=1,
# stdout=None,
# stderr=None,
# status='success',
# execution_time=2.7027177810668945
# )
You can use PyodideSandbox
as a LangChain tool:
from langchain_sandbox import PyodideSandboxTool
tool = PyodideSandboxTool()
result = await tool.ainvoke("print('Hello, world!')")
If you want to persist state between code executions (to persist variables, imports,
and definitions, etc.), you need to invoke the tool with thread_id
in the config:
code = """\
import numpy as np
x = np.array([1, 2, 3])
print(x)
"""
result = await tool.ainvoke(
code,
config={"configurable": {"thread_id": "123"}},
)
second_result = await tool.ainvoke(
"print(float(x[0]))", # tool is aware of the previous result
config={"configurable": {"thread_id": "123"}},
)
You can use PyodideSandboxTool
inside a LangGraph agent. If you are using this tool inside an agent, you can invoke the agent with a config, and it will automatically be passed to the tool:
from langgraph.prebuilt import create_react_agent
from langgraph.checkpoint.memory import InMemorySaver
from langchain_sandbox import PyodideSandboxTool
tool = PyodideSandboxTool()
agent = create_react_agent(
"anthropic:claude-3-7-sonnet-latest",
tools=[tool],
checkpointer=InMemorySaver()
)
result = await agent.ainvoke(
{"messages": [{"role": "user", "content": "what's 5 + 7?"}]},
config={"configurable": {"thread_id": "123"}},
)
second_result = await agent.ainvoke(
{"messages": [{"role": "user", "content": "what's the sine of that?"}]},
config={"configurable": {"thread_id": "123"}},
)
See full examples here:
The sandbox consists of two main components:
pyodide-sandbox-js
: JavaScript/TypeScript module using Deno to provide the core sandboxing functionality.sandbox-py
: ContainsPyodideSandbox
which just wraps the JavaScript/TypeScript module and executes it as a subprocess.