ImageNet training repository for Landskape experiments
The ImageNet dataset URLs are no longer public. You must obtain a non-public copy from https://image-net.org/ and download the relavent tar files. extract.sh
automates this, as long as you pass your URL into the TRAIN_URL and VALID_URL environment variables, like this:
$ TRAIN_URL="https://example.com/" VALID_URL="https://example.com/" extract.sh
Download ILSVRC2012_img_train.tar and run the bash script extract_data.sh
present in the utils
directory. This creates two directories, train
and val
, each with 1000 subdirectories which consist of the images from the dataset.
This implements training of popular model architectures, such as ResNet, AlexNet, and VGG on the ImageNet dataset.
- Install PyTorch (pytorch.org)
pip install -r requirements.txt
- Download and extract the ImageNet dataset as shown above
To train a model, run main.py
with the desired model architecture and the path to the ImageNet dataset:
python main.py -a resnet18 [imagenet-folder with train and val folders]
The default learning rate schedule starts at 0.1 and decays by a factor of 10 every 30 epochs. This is appropriate for ResNet and models with batch normalization, but too high for AlexNet and VGG. Use 0.01 as the initial learning rate for AlexNet or VGG:
python main.py -a alexnet --lr 0.01 [imagenet-folder with train and val folders]
You should always use the NCCL backend for multi-processing distributed training since it currently provides the best distributed training performance.
python main.py -a resnet50 --dist-url 'tcp://127.0.0.1:FREEPORT' --dist-backend 'nccl' --multiprocessing-distributed --world-size 1 --rank 0 [imagenet-folder with train and val folders]
Node 0:
python main.py -a resnet50 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' --dist-backend 'nccl' --multiprocessing-distributed --world-size 2 --rank 0 [imagenet-folder with train and val folders]
Node 1:
python main.py -a resnet50 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' --dist-backend 'nccl' --multiprocessing-distributed --world-size 2 --rank 1 [imagenet-folder with train and val folders]
usage: main.py [-h] [--arch ARCH] [-j N] [--epochs N] [--start-epoch N] [-b N]
[--lr LR] [--momentum M] [--weight-decay W] [--print-freq N]
[--resume PATH] [-e] [--pretrained] [--world-size WORLD_SIZE]
[--rank RANK] [--dist-url DIST_URL]
[--dist-backend DIST_BACKEND] [--seed SEED] [--gpu GPU]
[--multiprocessing-distributed] [--name]
DIR
PyTorch ImageNet Training
positional arguments:
DIR path to dataset
optional arguments:
-h, --help show this help message and exit
--arch ARCH, -a ARCH model architecture: alexnet | densenet121 |
densenet161 | densenet169 | densenet201 |
resnet101 | resnet152 | resnet18 | resnet34 |
resnet50 | squeezenet1_0 | squeezenet1_1 | vgg11 |
vgg11_bn | vgg13 | vgg13_bn | vgg16 | vgg16_bn | vgg19
| vgg19_bn (default: resnet18)
-j N, --workers N number of data loading workers (default: 4)
--epochs N number of total epochs to run
--start-epoch N manual epoch number (useful on restarts)
-b N, --batch-size N mini-batch size (default: 256), this is the total
batch size of all GPUs on the current node when using
Data Parallel or Distributed Data Parallel
--lr LR, --learning-rate LR
initial learning rate
--momentum M momentum
--weight-decay W, --wd W
weight decay (default: 1e-4)
--print-freq N, -p N print frequency (default: 10)
--resume PATH path to latest checkpoint (default: none)
-e, --evaluate evaluate model on validation set
--pretrained use pre-trained model
--world-size WORLD_SIZE
number of nodes for distributed training
--rank RANK node rank for distributed training
--dist-url DIST_URL url used to set up distributed training
--dist-backend DIST_BACKEND
distributed backend
--seed SEED seed for initializing training.
--gpu GPU GPU id to use.
--multiprocessing-distributed
Use multi-processing distributed training to launch N
processes per node, which has N GPUs. This is the
fastest way to use PyTorch for either single node or
multi node data parallel training
--name Name for the W&B run