forked from svpino/ml.school
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
276 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
metaflow |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,264 @@ | ||
from io import StringIO | ||
from pathlib import Path | ||
|
||
import pandas as pd | ||
from metaflow import S3, FlowSpec, Parameter, pypi, pypi_base, step | ||
|
||
|
||
def load_data_from_s3(location: str): | ||
print(f"Loading dataset from location {location}") | ||
|
||
with S3(s3root=location) as s3: | ||
files = s3.get_all() | ||
|
||
print(f"Found {len(files)} file(s) in remote location") | ||
|
||
raw_data = [pd.read_csv(StringIO(file.text)) for file in files] | ||
return pd.concat(raw_data) | ||
|
||
|
||
def load_data_from_file(): | ||
location = Path("../penguins.csv") | ||
print(f"Loading dataset from location {location.as_posix()}") | ||
return pd.read_csv(location) | ||
|
||
|
||
def build_model(nodes, learning_rate): | ||
from keras import Input | ||
from keras.layers import Dense | ||
from keras.models import Sequential | ||
from keras.optimizers import SGD | ||
|
||
model = Sequential( | ||
[ | ||
Input(shape=(7,)), | ||
Dense(nodes, activation="relu"), | ||
Dense(8, activation="relu"), | ||
Dense(3, activation="softmax"), | ||
], | ||
) | ||
|
||
model.compile( | ||
optimizer=SGD(learning_rate=learning_rate), | ||
loss="sparse_categorical_crossentropy", | ||
metrics=["accuracy"], | ||
) | ||
|
||
return model | ||
|
||
|
||
def build_tuner_model(hp): | ||
nodes = hp.Int("nodes", 10, 20, step=2) | ||
|
||
learning_rate = hp.Float( | ||
"learning_rate", | ||
1e-3, | ||
1e-2, | ||
sampling="log", | ||
default=1e-2, | ||
) | ||
|
||
return build_model(nodes, learning_rate) | ||
|
||
|
||
@pypi_base( | ||
python="3.10.14", | ||
packages={ | ||
"python-dotenv": "1.0.1", | ||
"scikit-learn": "1.4.1.post1", | ||
"pandas": "2.2.1", | ||
"numpy": "1.26.4", | ||
}, | ||
) | ||
class TrainingFlow(FlowSpec): | ||
debug = Parameter( | ||
"debug", | ||
help="Whether we are debugging the flow in a local environment", | ||
default=False, | ||
) | ||
|
||
dataset_location = Parameter( | ||
"dataset_location", | ||
help="Location to the initial dataset", | ||
default="metaflow/data/", | ||
) | ||
|
||
@step | ||
def start(self): | ||
self.my_var = "hello world" | ||
|
||
self.next(self.load_data) | ||
|
||
@pypi(packages={"boto3": "1.34.70"}) | ||
@step | ||
def load_data(self): | ||
"""Load the dataset in memory. | ||
This function reads every CSV file available and | ||
concatenates them into a single dataframe. | ||
""" | ||
import os | ||
|
||
if self.debug: | ||
df = load_data_from_file() | ||
else: | ||
location = f"s3://{os.environ['BUCKET']}/{self.dataset_location}" | ||
|
||
df = load_data_from_s3(location) | ||
|
||
# Shuffle the data | ||
self.data = df.sample(frac=1, random_state=42) | ||
|
||
print(f"Loaded dataset with {len(self.data)} samples") | ||
|
||
self.next(self.setup_target_transformer) | ||
|
||
@step | ||
def setup_target_transformer(self): | ||
from sklearn.compose import ColumnTransformer | ||
from sklearn.preprocessing import OrdinalEncoder | ||
|
||
self.target_transformer = ColumnTransformer( | ||
transformers=[("species", OrdinalEncoder(), [0])], | ||
) | ||
|
||
self.next(self.setup_features_transformer) | ||
|
||
@step | ||
def setup_features_transformer(self): | ||
from sklearn.compose import ColumnTransformer, make_column_selector | ||
from sklearn.impute import SimpleImputer | ||
from sklearn.pipeline import make_pipeline | ||
from sklearn.preprocessing import OneHotEncoder, StandardScaler | ||
|
||
numeric_transformer = make_pipeline( | ||
SimpleImputer(strategy="mean"), | ||
StandardScaler(), | ||
) | ||
|
||
categorical_transformer = make_pipeline( | ||
SimpleImputer(strategy="most_frequent"), | ||
OneHotEncoder(), | ||
) | ||
|
||
self.features_transformer = ColumnTransformer( | ||
transformers=[ | ||
( | ||
"numeric", | ||
numeric_transformer, | ||
make_column_selector(dtype_exclude="object"), | ||
), | ||
("categorical", categorical_transformer, ["island"]), | ||
], | ||
) | ||
|
||
self.next(self.split_dataset) | ||
|
||
@step | ||
def split_dataset(self): | ||
"""Split the data into train, validation, and test.""" | ||
from sklearn.model_selection import KFold | ||
|
||
self.target = self.data["species"] | ||
self.features = self.data.drop("species", axis=1) | ||
|
||
kfold = KFold(n_splits=5, shuffle=True) | ||
self.folds = list(enumerate(kfold.split(self.target, self.features))) | ||
|
||
self.next(self.transform_target, foreach="folds") | ||
|
||
@step | ||
def transform_target(self): | ||
import numpy as np | ||
|
||
self.fold, (self.train_indices, self.test_indices) = self.input | ||
|
||
self.y_train = np.squeeze( | ||
self.target_transformer.fit_transform( | ||
np.array(self.target.iloc[self.train_indices]).reshape(-1, 1), | ||
), | ||
) | ||
self.y_test = np.squeeze( | ||
self.target_transformer.transform( | ||
np.array(self.target.iloc[self.test_indices]).reshape(-1, 1), | ||
), | ||
) | ||
|
||
self.next(self.transform_features) | ||
|
||
@step | ||
def transform_features(self): | ||
self.x_train = self.features_transformer.fit_transform( | ||
self.features.iloc[self.train_indices], | ||
) | ||
self.x_test = self.features_transformer.transform( | ||
self.features.iloc[self.test_indices], | ||
) | ||
|
||
self.next(self.train_model) | ||
|
||
@pypi( | ||
packages={ | ||
"keras": "3.3.0", | ||
"jax[cpu]": "0.4.26", | ||
"packaging": "24.0", | ||
}, | ||
) | ||
@step | ||
def train_model(self): | ||
print(f"Training fold {self.fold}...") | ||
|
||
self.model = build_model(10, 0.01) | ||
|
||
self.model.fit( | ||
self.x_train, | ||
self.y_train, | ||
epochs=50, | ||
batch_size=32, | ||
verbose=2, | ||
) | ||
|
||
self.next(self.evaluate_model) | ||
|
||
@pypi( | ||
packages={ | ||
"keras": "3.3.0", | ||
"jax[cpu]": "0.4.26", | ||
"packaging": "24.0", | ||
}, | ||
) | ||
@step | ||
def evaluate_model(self): | ||
print(f"Evaluating fold {self.fold}...") | ||
|
||
self.loss, self.accuracy = self.model.evaluate( | ||
self.x_test, | ||
self.y_test, | ||
verbose=2, | ||
) | ||
|
||
print(f"Fold {self.fold} - loss: {self.loss} - accuracy: {self.accuracy}") | ||
self.next(self.reduce) | ||
|
||
@step | ||
def reduce(self, inputs): | ||
import numpy as np | ||
|
||
accuracies = [i.accuracy for i in inputs] | ||
accuracy = np.mean(accuracies) | ||
accuracy_std = np.std(accuracies) | ||
|
||
print(f"Accuracy: {accuracy} +-{accuracy_std}") | ||
|
||
self.next(self.end) | ||
|
||
@step | ||
def end(self): | ||
print("the end") | ||
|
||
|
||
if __name__ == "__main__": | ||
from dotenv import load_dotenv | ||
|
||
load_dotenv() | ||
TrainingFlow() |