Skip to content

fix bugs #2

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Sep 16, 2019
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 45 additions & 15 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -6205,16 +6205,16 @@ def stack(self, level=-1, dropna=True):
else:
return stack(self, level, dropna=dropna)

def explode(self, column: Union[str, Tuple]) -> "DataFrame":
def explode(self, columns: Union[str, List[str]]) -> "DataFrame":
"""
Transform each element of a list-like to a row, replicating index values.
Transform each element of a list-like to a row, replicating the
index values.

.. versionadded:: 0.25.0

Parameters
----------
column : str or tuple
Column to explode.

Returns
-------
Expand All @@ -6230,8 +6230,8 @@ def explode(self, column: Union[str, Tuple]) -> "DataFrame":
See Also
--------
DataFrame.unstack : Pivot a level of the (necessarily hierarchical)
index labels.
DataFrame.melt : Unpivot a DataFrame from wide format to long format.
index labels
DataFrame.melt : Unpivot a DataFrame from wide format to long format
Series.explode : Explode a DataFrame from list-like columns to long format.

Notes
Expand Down Expand Up @@ -6260,30 +6260,60 @@ def explode(self, column: Union[str, Tuple]) -> "DataFrame":
2 NaN 1
3 3 1
3 4 1
"""

>>> df = pd.DataFrame({'A': [[1, 2, 3], 'foo', [], [3, 4]],
'B': 1,
'C': [[7,8,9],'bar',[],[8,7]]})
>>> df
A B C
0 [1, 2, 3] 1 [7, 8, 9]
1 foo 1 bar
2 [] 1 []
3 [3, 4] 1 [8, 7]

>>> df.explode(['A','C'])
B A C
0 1 1 7
0 1 2 8
0 1 3 9
1 1 foo bar
2 1 NaN NaN
3 1 3 8
3 1 4 7
"""

# Validate data
if not self.columns.is_unique:
raise ValueError("columns must be unique")

if isinstance(columns, str):
columns = [columns]

if not isinstance(columns, list):
raise TypeError("columns value not list or sting")

if not all([c in self.columns for c in columns]):
raise ValueError("column name(s) not in index")

tmp = pd.DataFrame()
tmp = self.iloc[0:0,0:0].copy() # creates empty temp df
lengths_equal = []

for row in self[columns].iterrows():
r = row[1]
lengths_equal.append(len(set([len(r[c]) for c in columns]))==1)
# converts non-lists into 1 element lists
r=row[1].apply(lambda x: x if type(x) in (list,tuple) else [x])

# make sure all lists in the same record are the same length
row_is_ok = len(set([len(r[c]) for c in columns])) == 1
lengths_equal.append(row_is_ok)

# Explode all columns if lengths match
if all(lengths_equal):
for c in columns:
tmp[c] = self[c].explode()
else:
ValueError("lengths of lists in the same row not equal")

raise ValueError("lengths of lists in the same row not equal")

# join in exploded columns
results = self.drop(columns, axis=1).join(tmp)
return(results)

Expand Down