Skip to content

kurucan/Empirical-Asset-Pricing-via-Machine-Learning-Evidence-from-the-German-Stock-Market

Repository files navigation

Empirical-Asset-Pricing-via-Machine-Learning-Evidence-from-the-German-Stock-Market

Machine learning methods for identifing investment factors

There are now hundreds of different signals in the literature for predicting the return of a stock. These have been tested extensively, especially in regression models. The goal of this master thesis is to present a:

  • comparative analysis of different machine learning methods for the problem of empirical valuation of stock prices.
  • In doing so, an extensive database is used to show that these methods outperform leading regression-based strategies from the literature in some cases.
  • Furthermore, the best method will be identified and it will be explained how the high predictive power is achieved.
  • Furthermore, it will be shown which variables are most important for the prediction.

References:

Gu, Shihao; Kelly, Bryan; Xiu, Dacheng (2020): Empirical asset pricing via machine learning, in: The Review of Financial Studies, Vol. 33.5, S. 2223-2273.

About

Machine learning methods for identifing investment factors

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published