- Ubuntu 20.04
- at least four cuda-able GPUs (each >= 2080ti)
- 1.5 TB disk storage for data augmentation
- wandb for logging
Also, you must create .env file by copying .env.sample to set environmental variables.
wandb_api_key=[Your Key] # "xxxxxxxxxxxxxxxxxxxxxxxx"
data_dir=[Your Path] # "/home/ielab/repos/musdbHQ"
- about
wandb_api_key
- we currently only support wandb for logging.
- for
wandb_api_key
, visit wandb, go tosetting
, and then copy your api key
- about
data_dir
- the absolute path where datasets are stored
conda env create -f conda_env_gpu.yaml -n mdx-net
conda activate mdx-net
pip install -r requirements.txt
sudo apt-get install soundstretch
- The main difference between the branch Leaderboard_A and Leaderboard_B is the usage of the test dataset of Musdb18.
- Leaderboard A does not use test dataset for training: https://github.com/kuielab/mdx-net/blob/Leaderboard_A/configs/experiment/multigpu_default.yaml
- Leaderboard B uses test dataset for training:
- This repository is based on Lightning-Hydra Template
- Repository of TFC-TDF-U-Net, our previous ISMIR 2020 paper
- Also, facebook/demucs