This repository was archived by the owner on Sep 19, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 143
Pytorch Katib example #112
Merged
Merged
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
FROM pytorch/pytorch:0.4_cuda9_cudnn7 | ||
|
||
RUN pip install tensorboardX | ||
ADD . /opt/pytorch_dist_mnist | ||
ENTRYPOINT ["python", "/opt/pytorch_dist_mnist/mnist_with_summary.py"] |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
from __future__ import print_function | ||
import argparse | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
from torchvision import datasets, transforms | ||
from torch.autograd import Variable | ||
from tensorboardX import SummaryWriter | ||
# Training settings | ||
parser = argparse.ArgumentParser(description='PyTorch MNIST Example') | ||
parser.add_argument('--batch-size', type=int, default=64, metavar='N', | ||
help='input batch size for training (default: 64)') | ||
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', | ||
help='input batch size for testing (default: 1000)') | ||
parser.add_argument('--epochs', type=int, default=10, metavar='N', | ||
help='number of epochs to train (default: 10)') | ||
parser.add_argument('--lr', type=float, default=0.01, metavar='LR', | ||
help='learning rate (default: 0.01)') | ||
parser.add_argument('--momentum', type=float, default=0.5, metavar='M', | ||
help='SGD momentum (default: 0.5)') | ||
parser.add_argument('--no-cuda', action='store_true', default=False, | ||
help='disables CUDA training') | ||
parser.add_argument('--seed', type=int, default=1, metavar='S', | ||
help='random seed (default: 1)') | ||
parser.add_argument('--log-interval', type=int, default=10, metavar='N', | ||
help='how many batches to wait before logging training status') | ||
parser.add_argument('--dir', default='logs', metavar='L', | ||
help='directory where summary logs are stored') | ||
args = parser.parse_args() | ||
args.cuda = not args.no_cuda and torch.cuda.is_available() | ||
|
||
torch.manual_seed(args.seed) | ||
if args.cuda: | ||
torch.cuda.manual_seed(args.seed) | ||
|
||
|
||
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} | ||
train_loader = torch.utils.data.DataLoader( | ||
datasets.MNIST('../data', train=True, download=True, | ||
transform=transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.1307,), (0.3081,)) | ||
])), | ||
batch_size=args.batch_size, shuffle=True, **kwargs) | ||
test_loader = torch.utils.data.DataLoader( | ||
datasets.MNIST('../data', train=False, transform=transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.1307,), (0.3081,)) | ||
])), | ||
batch_size=args.batch_size, shuffle=True, **kwargs) | ||
|
||
|
||
class Net(nn.Module): | ||
def __init__(self): | ||
super(Net, self).__init__() | ||
self.conv1 = nn.Conv2d(1, 10, kernel_size=5) | ||
self.conv2 = nn.Conv2d(10, 20, kernel_size=5) | ||
self.conv2_drop = nn.Dropout2d() | ||
self.fc1 = nn.Linear(320, 50) | ||
self.fc2 = nn.Linear(50, 10) | ||
|
||
def forward(self, x): | ||
x = F.relu(F.max_pool2d(self.conv1(x), 2)) | ||
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) | ||
x = x.view(-1, 320) | ||
x = F.relu(self.fc1(x)) | ||
x = F.dropout(x, training=self.training) | ||
x = self.fc2(x) | ||
return F.log_softmax(x) | ||
|
||
model = Net() | ||
if args.cuda: | ||
model.cuda() | ||
|
||
print('Learning rate: {} Momentum: {} Logs dir: {}'.format(args.lr, args.momentum, args.dir)) | ||
writer = SummaryWriter(args.dir) | ||
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) | ||
|
||
def train(epoch): | ||
model.train() | ||
for batch_idx, (data, target) in enumerate(train_loader): | ||
if args.cuda: | ||
data, target = data.cuda(), target.cuda() | ||
data, target = Variable(data), Variable(target) | ||
optimizer.zero_grad() | ||
output = model(data) | ||
loss = F.nll_loss(output, target) | ||
loss.backward() | ||
optimizer.step() | ||
if batch_idx % args.log_interval == 0: | ||
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tloss={:.4f}'.format( | ||
epoch, batch_idx * len(data), len(train_loader.dataset), | ||
100. * batch_idx / len(train_loader), loss.item())) | ||
niter = epoch*len(train_loader)+batch_idx | ||
writer.add_scalar('loss', loss.item(), niter) | ||
|
||
def test(epoch): | ||
model.eval() | ||
test_loss = 0 | ||
correct = 0 | ||
for data, target in test_loader: | ||
if args.cuda: | ||
data, target = data.cuda(), target.cuda() | ||
data, target = Variable(data, volatile=True), Variable(target) | ||
output = model(data) | ||
test_loss += F.nll_loss(output, target, size_average=False).item() # sum up batch loss | ||
pred = output.data.max(1)[1] # get the index of the max log-probability | ||
correct += pred.eq(target.data).cpu().sum() | ||
|
||
test_loss /= len(test_loader.dataset) | ||
print('\naccuracy={:.4f}\n'.format(float(correct) / len(test_loader.dataset))) | ||
writer.add_scalar('accuracy', float(correct) / len(test_loader.dataset), epoch) | ||
|
||
|
||
for epoch in range(1, args.epochs + 1): | ||
train(epoch) | ||
test(epoch) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
apiVersion: "kubeflow.org/v1beta1" | ||
kind: "PyTorchJob" | ||
metadata: | ||
name: "pytorch-mnist-with-summary" | ||
spec: | ||
pytorchReplicaSpecs: | ||
Worker: | ||
replicas: 1 | ||
restartPolicy: OnFailure | ||
template: | ||
spec: | ||
containers: | ||
- name: pytorch | ||
image: gcr.io/kubeflow-ci/pytorch-mnist-with-summary:0.4 |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Do you need to parameterize the output directory? Where do the events get stored?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
updated