Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Components - TFX #2671

Merged
merged 26 commits into from
Dec 5, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
26 commits
Select commit Hold shift + click to select a range
1de4368
Added CsvExampleGen component
Ark-kun Oct 21, 2019
1751f99
Switched to using some processing code from the component class
Ark-kun Oct 31, 2019
0ccd7c3
Renamed output_examples to example_artifacts for consistency with the…
Ark-kun Oct 31, 2019
ace062e
Fixed the docstring a bit
Ark-kun Oct 31, 2019
8e30a62
Added StatisticsGen
Ark-kun Oct 31, 2019
b8fd5a7
Added SchemaGen
Ark-kun Oct 31, 2019
35ab2e0
Fixed the input_dict construction
Ark-kun Nov 1, 2019
fcef473
Use None defaults
Ark-kun Nov 1, 2019
8a1d1e5
Switched to TFX container image
Ark-kun Nov 1, 2019
d6e6b52
Updated component definitions
Ark-kun Nov 1, 2019
fa7374c
Fixed StatisticsGen and SchemaGen
Ark-kun Nov 2, 2019
a9e784e
Printing component instance in CsvExampleGen
Ark-kun Nov 2, 2019
3a1159a
Moved components to directories
Ark-kun Nov 2, 2019
5645997
Updated the sample TFX pipeline
Ark-kun Nov 2, 2019
eb8f281
Renamed ExamplesPath to Examples for data passing components
Ark-kun Nov 7, 2019
f84d7c9
Corrected output_component_file paths
Ark-kun Nov 7, 2019
1cc4a0f
Added the Transform component
Ark-kun Nov 7, 2019
7cc3350
Added the Trainer component
Ark-kun Nov 7, 2019
9f5fe9c
Added the BigQueryExampleGen component
Ark-kun Nov 7, 2019
91ec94d
Added the ImportExampleGen component
Ark-kun Nov 7, 2019
4892bbf
Added the Evaluator component
Ark-kun Nov 7, 2019
bda6978
Added the ExampleValidator component
Ark-kun Nov 7, 2019
093e2d2
Updated the sample
Ark-kun Nov 26, 2019
034cd32
Upgraded to TFX 0.15.0
Ark-kun Nov 28, 2019
8fec5f1
Upgraded the sample to 0.15.0
Ark-kun Nov 28, 2019
bbf11e3
Silence Flake8 for annotations
Ark-kun Nov 28, 2019
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
130 changes: 130 additions & 0 deletions components/tfx/Evaluator/component.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
# flake8: noqa TODO

from kfp.components import InputPath, OutputPath


def Evaluator(
examples_path: InputPath('Examples'),
model_exports_path: InputPath('Model'),
#model_path: InputPath('Model'),

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can we use model_path from the very beginning. I think TFX is migrating to that.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It's a bit non-trivial since the ComponentSpec.INPUTS uses the old names.
I'll solve this issue in another PR.


output_path: OutputPath('ModelEval'),

feature_slicing_spec: 'JsonObject: evaluator_pb2.FeatureSlicingSpec' = None,
):
"""
A TFX component to evaluate models trained by a TFX Trainer component.
The Evaluator component performs model evaluations in the TFX pipeline and
the resultant metrics can be viewed in a Jupyter notebook. It uses the
input examples generated from the
[ExampleGen](https://www.tensorflow.org/tfx/guide/examplegen)
component to evaluate the models.
Specifically, it can provide:
- metrics computed on entire training and eval dataset
- tracking metrics over time
- model quality performance on different feature slices
## Exporting the EvalSavedModel in Trainer
In order to setup Evaluator in a TFX pipeline, an EvalSavedModel needs to be
exported during training, which is a special SavedModel containing
annotations for the metrics, features, labels, and so on in your model.
Evaluator uses this EvalSavedModel to compute metrics.
As part of this, the Trainer component creates eval_input_receiver_fn,
analogous to the serving_input_receiver_fn, which will extract the features
and labels from the input data. As with serving_input_receiver_fn, there are
utility functions to help with this.
Please see https://www.tensorflow.org/tfx/model_analysis for more details.
Args:
examples: A Channel of 'ExamplesPath' type, usually produced by ExampleGen
component. @Ark-kun: Must have the eval split. _required_
model_exports: A Channel of 'ModelExportPath' type, usually produced by
Trainer component. Will be deprecated in the future for the `model`
parameter.
#model: Future replacement of the `model_exports` argument.
feature_slicing_spec:
[evaluator_pb2.FeatureSlicingSpec](https://github.com/tensorflow/tfx/blob/master/tfx/proto/evaluator.proto)
instance that describes how Evaluator should slice the data.
Returns:
output: Channel of `ModelEvalPath` to store the evaluation results.
Either `model_exports` or `model` must be present in the input arguments.
"""
from tfx.components.evaluator.component import Evaluator
component_class = Evaluator
input_channels_with_splits = {'examples'}
output_channels_with_splits = {}


import json
import os
from google.protobuf import json_format, message
from tfx.types import Artifact, channel_utils

arguments = locals().copy()

component_class_args = {}

for name, execution_parameter in component_class.SPEC_CLASS.PARAMETERS.items():
argument_value_obj = argument_value = arguments.get(name, None)
if argument_value is None:
continue
parameter_type = execution_parameter.type
if isinstance(parameter_type, type) and issubclass(parameter_type, message.Message): # execution_parameter.type can also be a tuple
argument_value_obj = parameter_type()
json_format.Parse(argument_value, argument_value_obj)
component_class_args[name] = argument_value_obj

for name, channel_parameter in component_class.SPEC_CLASS.INPUTS.items():
artifact_path = arguments[name + '_path']
artifacts = []
if name in input_channels_with_splits:
# Recovering splits
splits = sorted(os.listdir(artifact_path))
for split in splits:
artifact = Artifact(type_name=channel_parameter.type_name)
artifact.split = split
artifact.uri = os.path.join(artifact_path, split) + '/'
artifacts.append(artifact)
else:
artifact = Artifact(type_name=channel_parameter.type_name)
artifact.uri = artifact_path + '/' # ?
artifacts.append(artifact)
component_class_args[name] = channel_utils.as_channel(artifacts)

component_class_instance = component_class(**component_class_args)

input_dict = {name: channel.get() for name, channel in component_class_instance.inputs.get_all().items()}
output_dict = {name: channel.get() for name, channel in component_class_instance.outputs.get_all().items()}
exec_properties = component_class_instance.exec_properties

# Generating paths for output artifacts
for name, artifacts in output_dict.items():
base_artifact_path = arguments[name + '_path']
for artifact in artifacts:
artifact.uri = os.path.join(base_artifact_path, artifact.split) # Default split is ''

print('component instance: ' + str(component_class_instance))

#executor = component_class.EXECUTOR_SPEC.executor_class() # Same
executor = component_class_instance.executor_spec.executor_class()
executor.Do(
input_dict=input_dict,
output_dict=output_dict,
exec_properties=exec_properties,
)


if __name__ == '__main__':
import kfp
kfp.components.func_to_container_op(
Evaluator,
base_image='tensorflow/tfx:0.15.0',
output_component_file='component.yaml'
)
232 changes: 232 additions & 0 deletions components/tfx/Evaluator/component.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,232 @@
name: Evaluator
description: |
A TFX component to evaluate models trained by a TFX Trainer component.
The Evaluator component performs model evaluations in the TFX pipeline and
the resultant metrics can be viewed in a Jupyter notebook. It uses the
input examples generated from the
[ExampleGen](https://www.tensorflow.org/tfx/guide/examplegen)
component to evaluate the models.
Specifically, it can provide:
- metrics computed on entire training and eval dataset
- tracking metrics over time
- model quality performance on different feature slices
## Exporting the EvalSavedModel in Trainer
In order to setup Evaluator in a TFX pipeline, an EvalSavedModel needs to be
exported during training, which is a special SavedModel containing
annotations for the metrics, features, labels, and so on in your model.
Evaluator uses this EvalSavedModel to compute metrics.
As part of this, the Trainer component creates eval_input_receiver_fn,
analogous to the serving_input_receiver_fn, which will extract the features
and labels from the input data. As with serving_input_receiver_fn, there are
utility functions to help with this.
Please see https://www.tensorflow.org/tfx/model_analysis for more details.
Args:
examples: A Channel of 'ExamplesPath' type, usually produced by ExampleGen
component. @Ark-kun: Must have the eval split. _required_
model_exports: A Channel of 'ModelExportPath' type, usually produced by
Trainer component. Will be deprecated in the future for the `model`
parameter.
#model: Future replacement of the `model_exports` argument.
feature_slicing_spec:
[evaluator_pb2.FeatureSlicingSpec](https://github.com/tensorflow/tfx/blob/master/tfx/proto/evaluator.proto)
instance that describes how Evaluator should slice the data.
Returns:
output: Channel of `ModelEvalPath` to store the evaluation results.
Either `model_exports` or `model` must be present in the input arguments.
inputs:
- name: examples
type: Examples
- name: model_exports
type: Model
- name: feature_slicing_spec
type: 'JsonObject: evaluator_pb2.FeatureSlicingSpec'
optional: true
outputs:
- name: output
type: ModelEval
implementation:
container:
image: tensorflow/tfx:0.15.0
command:
- python3
- -u
- -c
- |
class OutputPath:
'''When creating component from function, OutputPath should be used as function parameter annotation to tell the system that the function wants to output data by writing it into a file with the given path instead of returning the data from the function.'''
def __init__(self, type=None):
self.type = type
class InputPath:
'''When creating component from function, InputPath should be used as function parameter annotation to tell the system to pass the *data file path* to the function instead of passing the actual data.'''
def __init__(self, type=None):
self.type = type
def _make_parent_dirs_and_return_path(file_path: str):
import os
os.makedirs(os.path.dirname(file_path), exist_ok=True)
return file_path
def Evaluator(
examples_path: InputPath('Examples'),
model_exports_path: InputPath('Model'),
#model_path: InputPath('Model'),
output_path: OutputPath('ModelEval'),
feature_slicing_spec: 'JsonObject: evaluator_pb2.FeatureSlicingSpec' = None,
):
"""
A TFX component to evaluate models trained by a TFX Trainer component.
The Evaluator component performs model evaluations in the TFX pipeline and
the resultant metrics can be viewed in a Jupyter notebook. It uses the
input examples generated from the
[ExampleGen](https://www.tensorflow.org/tfx/guide/examplegen)
component to evaluate the models.
Specifically, it can provide:
- metrics computed on entire training and eval dataset
- tracking metrics over time
- model quality performance on different feature slices
## Exporting the EvalSavedModel in Trainer
In order to setup Evaluator in a TFX pipeline, an EvalSavedModel needs to be
exported during training, which is a special SavedModel containing
annotations for the metrics, features, labels, and so on in your model.
Evaluator uses this EvalSavedModel to compute metrics.
As part of this, the Trainer component creates eval_input_receiver_fn,
analogous to the serving_input_receiver_fn, which will extract the features
and labels from the input data. As with serving_input_receiver_fn, there are
utility functions to help with this.
Please see https://www.tensorflow.org/tfx/model_analysis for more details.
Args:
examples: A Channel of 'ExamplesPath' type, usually produced by ExampleGen
component. @Ark-kun: Must have the eval split. _required_
model_exports: A Channel of 'ModelExportPath' type, usually produced by
Trainer component. Will be deprecated in the future for the `model`
parameter.
#model: Future replacement of the `model_exports` argument.
feature_slicing_spec:
[evaluator_pb2.FeatureSlicingSpec](https://github.com/tensorflow/tfx/blob/master/tfx/proto/evaluator.proto)
instance that describes how Evaluator should slice the data.
Returns:
output: Channel of `ModelEvalPath` to store the evaluation results.
Either `model_exports` or `model` must be present in the input arguments.
"""
from tfx.components.evaluator.component import Evaluator
component_class = Evaluator
input_channels_with_splits = {'examples'}
output_channels_with_splits = {}
import json
import os
from google.protobuf import json_format, message
from tfx.types import Artifact, channel_utils
arguments = locals().copy()
component_class_args = {}
for name, execution_parameter in component_class.SPEC_CLASS.PARAMETERS.items():
argument_value_obj = argument_value = arguments.get(name, None)
if argument_value is None:
continue
parameter_type = execution_parameter.type
if isinstance(parameter_type, type) and issubclass(parameter_type, message.Message): # execution_parameter.type can also be a tuple
argument_value_obj = parameter_type()
json_format.Parse(argument_value, argument_value_obj)
component_class_args[name] = argument_value_obj
for name, channel_parameter in component_class.SPEC_CLASS.INPUTS.items():
artifact_path = arguments[name + '_path']
artifacts = []
if name in input_channels_with_splits:
# Recovering splits
splits = sorted(os.listdir(artifact_path))
for split in splits:
artifact = Artifact(type_name=channel_parameter.type_name)
artifact.split = split
artifact.uri = os.path.join(artifact_path, split) + '/'
artifacts.append(artifact)
else:
artifact = Artifact(type_name=channel_parameter.type_name)
artifact.uri = artifact_path + '/' # ?
artifacts.append(artifact)
component_class_args[name] = channel_utils.as_channel(artifacts)
component_class_instance = component_class(**component_class_args)
input_dict = {name: channel.get() for name, channel in component_class_instance.inputs.get_all().items()}
output_dict = {name: channel.get() for name, channel in component_class_instance.outputs.get_all().items()}
exec_properties = component_class_instance.exec_properties
# Generating paths for output artifacts
for name, artifacts in output_dict.items():
base_artifact_path = arguments[name + '_path']
for artifact in artifacts:
artifact.uri = os.path.join(base_artifact_path, artifact.split) # Default split is ''
print('component instance: ' + str(component_class_instance))
#executor = component_class.EXECUTOR_SPEC.executor_class() # Same
executor = component_class_instance.executor_spec.executor_class()
executor.Do(
input_dict=input_dict,
output_dict=output_dict,
exec_properties=exec_properties,
)
import argparse
_parser = argparse.ArgumentParser(prog='Evaluator', description="A TFX component to evaluate models trained by a TFX Trainer component.\n\n The Evaluator component performs model evaluations in the TFX pipeline and\n the resultant metrics can be viewed in a Jupyter notebook. It uses the\n input examples generated from the\n [ExampleGen](https://www.tensorflow.org/tfx/guide/examplegen)\n component to evaluate the models.\n\n Specifically, it can provide:\n - metrics computed on entire training and eval dataset\n - tracking metrics over time\n - model quality performance on different feature slices\n\n ## Exporting the EvalSavedModel in Trainer\n\n In order to setup Evaluator in a TFX pipeline, an EvalSavedModel needs to be\n exported during training, which is a special SavedModel containing\n annotations for the metrics, features, labels, and so on in your model.\n Evaluator uses this EvalSavedModel to compute metrics.\n\n As part of this, the Trainer component creates eval_input_receiver_fn,\n analogous to the serving_input_receiver_fn, which will extract the features\n and labels from the input data. As with serving_input_receiver_fn, there are\n utility functions to help with this.\n\n Please see https://www.tensorflow.org/tfx/model_analysis for more details.\n\n Args:\n examples: A Channel of 'ExamplesPath' type, usually produced by ExampleGen\n component. @Ark-kun: Must have the eval split. _required_\n model_exports: A Channel of 'ModelExportPath' type, usually produced by\n Trainer component. Will be deprecated in the future for the `model`\n parameter.\n #model: Future replacement of the `model_exports` argument.\n feature_slicing_spec:\n [evaluator_pb2.FeatureSlicingSpec](https://github.com/tensorflow/tfx/blob/master/tfx/proto/evaluator.proto)\n instance that describes how Evaluator should slice the data.\n Returns:\n output: Channel of `ModelEvalPath` to store the evaluation results.\n\n Either `model_exports` or `model` must be present in the input arguments.\n")
_parser.add_argument("--examples", dest="examples_path", type=str, required=True, default=argparse.SUPPRESS)
_parser.add_argument("--model-exports", dest="model_exports_path", type=str, required=True, default=argparse.SUPPRESS)
_parser.add_argument("--feature-slicing-spec", dest="feature_slicing_spec", type=str, required=False, default=argparse.SUPPRESS)
_parser.add_argument("--output", dest="output_path", type=_make_parent_dirs_and_return_path, required=True, default=argparse.SUPPRESS)
_parsed_args = vars(_parser.parse_args())
_output_files = _parsed_args.pop("_output_paths", [])
_outputs = Evaluator(**_parsed_args)
if not hasattr(_outputs, '__getitem__') or isinstance(_outputs, str):
_outputs = [_outputs]
_output_serializers = [
]
import os
for idx, output_file in enumerate(_output_files):
try:
os.makedirs(os.path.dirname(output_file))
except OSError:
pass
with open(output_file, 'w') as f:
f.write(_output_serializers[idx](_outputs[idx]))
args:
- --examples
- inputPath: examples
- --model-exports
- inputPath: model_exports
- if:
cond:
isPresent: feature_slicing_spec
then:
- --feature-slicing-spec
- inputValue: feature_slicing_spec
- --output
- outputPath: output
Loading