-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Components - XGBoost - Train and Predict from Apache Parquet (#4035)
* Components - XGBoost - Train and Predict from Apache Parquet * Updated the sample pipeline
- Loading branch information
Showing
5 changed files
with
488 additions
and
11 deletions.
There are no files selected for viewing
54 changes: 54 additions & 0 deletions
54
components/XGBoost/Predict/from_ApacheParquet/component.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
from kfp.components import InputPath, OutputPath, create_component_from_func | ||
|
||
def xgboost_predict( | ||
data_path: InputPath('ApacheParquet'), | ||
model_path: InputPath('XGBoostModel'), | ||
predictions_path: OutputPath('Text'), | ||
label_column_name: str = None, | ||
): | ||
'''Make predictions using a trained XGBoost model. | ||
Args: | ||
data_path: Path for the feature data in Apache Parquet format. | ||
model_path: Path for the trained model in binary XGBoost format. | ||
predictions_path: Output path for the predictions. | ||
label_column_name: Optional. Name of the column containing the label data that is excluded during the prediction. | ||
Annotations: | ||
author: Alexey Volkov <alexey.volkov@ark-kun.com> | ||
''' | ||
from pathlib import Path | ||
|
||
import numpy | ||
import pandas | ||
import xgboost | ||
|
||
# Loading data | ||
df = pandas.read_parquet(data_path) | ||
if label_column_name: | ||
df = df.drop(columns=[label_column_name]) | ||
|
||
evaluation_data = xgboost.DMatrix( | ||
data=df, | ||
) | ||
|
||
# Training | ||
model = xgboost.Booster(model_file=model_path) | ||
|
||
predictions = model.predict(evaluation_data) | ||
|
||
Path(predictions_path).parent.mkdir(parents=True, exist_ok=True) | ||
numpy.savetxt(predictions_path, predictions) | ||
|
||
|
||
if __name__ == '__main__': | ||
create_component_from_func( | ||
xgboost_predict, | ||
output_component_file='component.yaml', | ||
base_image='python:3.7', | ||
packages_to_install=[ | ||
'xgboost==1.1.1', | ||
'pandas==1.0.5', | ||
'pyarrow==0.17.1', | ||
] | ||
) |
98 changes: 98 additions & 0 deletions
98
components/XGBoost/Predict/from_ApacheParquet/component.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
name: Xgboost predict | ||
description: |- | ||
Make predictions using a trained XGBoost model. | ||
Args: | ||
data_path: Path for the feature data in Apache Parquet format. | ||
model_path: Path for the trained model in binary XGBoost format. | ||
predictions_path: Output path for the predictions. | ||
label_column_name: Optional. Name of the column containing the label data that is excluded during the prediction. | ||
Annotations: | ||
author: Alexey Volkov <alexey.volkov@ark-kun.com> | ||
inputs: | ||
- {name: data, type: ApacheParquet} | ||
- {name: model, type: XGBoostModel} | ||
- {name: label_column_name, type: String, optional: true} | ||
outputs: | ||
- {name: predictions, type: Text} | ||
implementation: | ||
container: | ||
image: python:3.7 | ||
command: | ||
- sh | ||
- -c | ||
- (PIP_DISABLE_PIP_VERSION_CHECK=1 python3 -m pip install --quiet --no-warn-script-location | ||
'xgboost==1.1.1' 'pandas==1.0.5' 'pyarrow==0.17.1' || PIP_DISABLE_PIP_VERSION_CHECK=1 | ||
python3 -m pip install --quiet --no-warn-script-location 'xgboost==1.1.1' 'pandas==1.0.5' | ||
'pyarrow==0.17.1' --user) && "$0" "$@" | ||
- python3 | ||
- -u | ||
- -c | ||
- | | ||
def _make_parent_dirs_and_return_path(file_path: str): | ||
import os | ||
os.makedirs(os.path.dirname(file_path), exist_ok=True) | ||
return file_path | ||
def xgboost_predict( | ||
data_path, | ||
model_path, | ||
predictions_path, | ||
label_column_name = None, | ||
): | ||
'''Make predictions using a trained XGBoost model. | ||
Args: | ||
data_path: Path for the feature data in Apache Parquet format. | ||
model_path: Path for the trained model in binary XGBoost format. | ||
predictions_path: Output path for the predictions. | ||
label_column_name: Optional. Name of the column containing the label data that is excluded during the prediction. | ||
Annotations: | ||
author: Alexey Volkov <alexey.volkov@ark-kun.com> | ||
''' | ||
from pathlib import Path | ||
import numpy | ||
import pandas | ||
import xgboost | ||
# Loading data | ||
df = pandas.read_parquet(data_path) | ||
if label_column_name: | ||
df = df.drop(columns=[label_column_name]) | ||
evaluation_data = xgboost.DMatrix( | ||
data=df, | ||
) | ||
# Training | ||
model = xgboost.Booster(model_file=model_path) | ||
predictions = model.predict(evaluation_data) | ||
Path(predictions_path).parent.mkdir(parents=True, exist_ok=True) | ||
numpy.savetxt(predictions_path, predictions) | ||
import argparse | ||
_parser = argparse.ArgumentParser(prog='Xgboost predict', description='Make predictions using a trained XGBoost model.\n\n Args:\n data_path: Path for the feature data in Apache Parquet format.\n model_path: Path for the trained model in binary XGBoost format.\n predictions_path: Output path for the predictions.\n label_column_name: Optional. Name of the column containing the label data that is excluded during the prediction.\n\n Annotations:\n author: Alexey Volkov <alexey.volkov@ark-kun.com>') | ||
_parser.add_argument("--data", dest="data_path", type=str, required=True, default=argparse.SUPPRESS) | ||
_parser.add_argument("--model", dest="model_path", type=str, required=True, default=argparse.SUPPRESS) | ||
_parser.add_argument("--label-column-name", dest="label_column_name", type=str, required=False, default=argparse.SUPPRESS) | ||
_parser.add_argument("--predictions", dest="predictions_path", type=_make_parent_dirs_and_return_path, required=True, default=argparse.SUPPRESS) | ||
_parsed_args = vars(_parser.parse_args()) | ||
_outputs = xgboost_predict(**_parsed_args) | ||
args: | ||
- --data | ||
- {inputPath: data} | ||
- --model | ||
- {inputPath: model} | ||
- if: | ||
cond: {isPresent: label_column_name} | ||
then: | ||
- --label-column-name | ||
- {inputValue: label_column_name} | ||
- --predictions | ||
- {outputPath: predictions} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
from kfp.components import InputPath, OutputPath, create_component_from_func | ||
|
||
def xgboost_train( | ||
training_data_path: InputPath('ApacheParquet'), | ||
model_path: OutputPath('XGBoostModel'), | ||
model_config_path: OutputPath('XGBoostModelConfig'), | ||
label_column_name: str, | ||
|
||
starting_model_path: InputPath('XGBoostModel') = None, | ||
|
||
num_iterations: int = 10, | ||
booster_params: dict = None, | ||
|
||
# Booster parameters | ||
objective: str = 'reg:squarederror', | ||
booster: str = 'gbtree', | ||
learning_rate: float = 0.3, | ||
min_split_loss: float = 0, | ||
max_depth: int = 6, | ||
): | ||
'''Train an XGBoost model. | ||
Args: | ||
training_data_path: Path for the training data in Apache Parquet format. | ||
model_path: Output path for the trained model in binary XGBoost format. | ||
model_config_path: Output path for the internal parameter configuration of Booster as a JSON string. | ||
starting_model_path: Path for the existing trained model to start from. | ||
label_column_name: Name of the column containing the label data. | ||
num_boost_rounds: Number of boosting iterations. | ||
booster_params: Parameters for the booster. See https://xgboost.readthedocs.io/en/latest/parameter.html | ||
objective: The learning task and the corresponding learning objective. | ||
See https://xgboost.readthedocs.io/en/latest/parameter.html#learning-task-parameters | ||
The most common values are: | ||
"reg:squarederror" - Regression with squared loss (default). | ||
"reg:logistic" - Logistic regression. | ||
"binary:logistic" - Logistic regression for binary classification, output probability. | ||
"binary:logitraw" - Logistic regression for binary classification, output score before logistic transformation | ||
"rank:pairwise" - Use LambdaMART to perform pairwise ranking where the pairwise loss is minimized | ||
"rank:ndcg" - Use LambdaMART to perform list-wise ranking where Normalized Discounted Cumulative Gain (NDCG) is maximized | ||
Annotations: | ||
author: Alexey Volkov <alexey.volkov@ark-kun.com> | ||
''' | ||
import pandas | ||
import xgboost | ||
|
||
# Loading data | ||
df = pandas.read_parquet(training_data_path) | ||
training_data = xgboost.DMatrix( | ||
data=df.drop(columns=[label_column_name]), | ||
label=df[[label_column_name]], | ||
) | ||
# Training | ||
booster_params = booster_params or {} | ||
booster_params.setdefault('objective', objective) | ||
booster_params.setdefault('booster', booster) | ||
booster_params.setdefault('learning_rate', learning_rate) | ||
booster_params.setdefault('min_split_loss', min_split_loss) | ||
booster_params.setdefault('max_depth', max_depth) | ||
|
||
starting_model = None | ||
if starting_model_path: | ||
starting_model = xgboost.Booster(model_file=starting_model_path) | ||
|
||
model = xgboost.train( | ||
params=booster_params, | ||
dtrain=training_data, | ||
num_boost_round=num_iterations, | ||
xgb_model=starting_model | ||
) | ||
|
||
# Saving the model in binary format | ||
model.save_model(model_path) | ||
|
||
model_config_str = model.save_config() | ||
with open(model_config_path, 'w') as model_config_file: | ||
model_config_file.write(model_config_str) | ||
|
||
|
||
if __name__ == '__main__': | ||
create_component_from_func( | ||
xgboost_train, | ||
output_component_file='component.yaml', | ||
base_image='python:3.7', | ||
packages_to_install=[ | ||
'xgboost==1.1.1', | ||
'pandas==1.0.5', | ||
'pyarrow==0.17.1', | ||
] | ||
) |
Oops, something went wrong.