Skip to content

Commit

Permalink
feat(components): Release Forecasting training pipelines to V1 namespace
Browse files Browse the repository at this point in the history
PiperOrigin-RevId: 615914679
  • Loading branch information
Googler committed Mar 14, 2024
1 parent 2abe91e commit ab549ef
Show file tree
Hide file tree
Showing 10 changed files with 45 additions and 31,232 deletions.
1 change: 0 additions & 1 deletion components/google-cloud/RELEASE.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
## Upcoming release
* Add `v1.automl.forecasting.learn_to_learn_forecasting_pipeline`, `v1.automl.forecasting.sequence_to_sequence_forecasting_pipeline`, `v1.automl.forecasting.temporal_fusion_transformer_forecasting_pipeline`, `v1.automl.forecasting.time_series_dense_encoder_forecasting_pipeline` as Forecasting on Pipelines moves to GA.
* Fix bug in `preview.llm.rlhf_pipeline` that caused wrong output artifact to be used for inference after training.
* Fix issue where AutoSxS was not propagating location to all sub-components.
* Add CMEK support to `preview.llm.infer_pipeline`.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,24 +12,18 @@
# See the License for the specific language governing permissions and
# limitations under the License.

"""Preview AutoML forecasting components."""

"""Experimental AutoML forecasting components."""
import os

from google_cloud_pipeline_components.preview.automl.forecasting.forecasting_ensemble import automl_forecasting_ensemble as ForecastingEnsembleOp
from google_cloud_pipeline_components.preview.automl.forecasting.forecasting_stage_1_tuner import automl_forecasting_stage_1_tuner as ForecastingStage1TunerOp
from google_cloud_pipeline_components.preview.automl.forecasting.forecasting_stage_2_tuner import automl_forecasting_stage_2_tuner as ForecastingStage2TunerOp
from google_cloud_pipeline_components.v1.automl.forecasting import learn_to_learn_forecasting_pipeline
from google_cloud_pipeline_components.v1.automl.forecasting import sequence_to_sequence_forecasting_pipeline
from google_cloud_pipeline_components.v1.automl.forecasting import temporal_fusion_transformer_forecasting_pipeline
from google_cloud_pipeline_components.v1.automl.forecasting import time_series_dense_encoder_forecasting_pipeline
from google_cloud_pipeline_components.v1.automl.forecasting.utils import get_learn_to_learn_forecasting_pipeline_and_parameters
from google_cloud_pipeline_components.v1.automl.forecasting.utils import get_sequence_to_sequence_forecasting_pipeline_and_parameters
from google_cloud_pipeline_components.v1.automl.forecasting.utils import get_temporal_fusion_transformer_forecasting_pipeline_and_parameters
from google_cloud_pipeline_components.v1.automl.forecasting.utils import get_time_series_dense_encoder_forecasting_pipeline_and_parameters
from google_cloud_pipeline_components.preview.automl.forecasting.utils import get_learn_to_learn_forecasting_pipeline_and_parameters
from google_cloud_pipeline_components.preview.automl.forecasting.utils import get_sequence_to_sequence_forecasting_pipeline_and_parameters
from google_cloud_pipeline_components.preview.automl.forecasting.utils import get_temporal_fusion_transformer_forecasting_pipeline_and_parameters
from google_cloud_pipeline_components.preview.automl.forecasting.utils import get_time_series_dense_encoder_forecasting_pipeline_and_parameters
from kfp import components


__all__ = [
'ForecastingEnsembleOp',
'ForecastingStage1TunerOp',
Expand All @@ -43,3 +37,38 @@
'temporal_fusion_transformer_forecasting_pipeline',
'time_series_dense_encoder_forecasting_pipeline',
]

learn_to_learn_forecasting_pipeline = components.load_component_from_file(
# Note, please don't name it as `component.yaml` which will conflict with
# the generated file.
os.path.join(
os.path.dirname(__file__), 'learn_to_learn_forecasting_pipeline.yaml'
)
)

sequence_to_sequence_forecasting_pipeline = components.load_component_from_file(
# Note, please don't name it as `component.yaml` which will conflict with
# the generated file.
os.path.join(
os.path.dirname(__file__),
'sequence_to_sequence_forecasting_pipeline.yaml',
)
)

temporal_fusion_transformer_forecasting_pipeline = components.load_component_from_file(
# Note, please don't name it as `component.yaml` which will conflict with
# the generated file.
os.path.join(
os.path.dirname(__file__),
'temporal_fusion_transformer_forecasting_pipeline.yaml',
)
)

time_series_dense_encoder_forecasting_pipeline = components.load_component_from_file(
# Note, please don't name it as `component.yaml` which will conflict with
# the generated file.
os.path.join(
os.path.dirname(__file__),
'time_series_dense_encoder_forecasting_pipeline.yaml',
)
)
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@
# test_fraction: float [Default: -1.0]
# tf_auto_transform_features: dict
# tf_custom_transformation_definitions: list
# tf_transform_execution_engine: str [Default: 'bigquery']
# tf_transform_execution_engine: str [Default: '']
# tf_transformations_path: str [Default: '']
# training_fraction: float [Default: -1.0]
# transform_dataflow_disk_size_gb: int [Default: 40.0]
Expand Down Expand Up @@ -3819,7 +3819,7 @@ root:
isOptional: true
parameterType: LIST
tf_transform_execution_engine:
defaultValue: bigquery
defaultValue: ''
description: 'Execution engine to run TF-based
transformations. Currently supports "dataflow" or "bigquery"'
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@
# test_fraction: float [Default: -1.0]
# tf_auto_transform_features: dict
# tf_custom_transformation_definitions: list
# tf_transform_execution_engine: str [Default: 'bigquery']
# tf_transform_execution_engine: str [Default: '']
# tf_transformations_path: str [Default: '']
# training_fraction: float [Default: -1.0]
# transform_dataflow_disk_size_gb: int [Default: 40.0]
Expand Down Expand Up @@ -3839,7 +3839,7 @@ root:
isOptional: true
parameterType: LIST
tf_transform_execution_engine:
defaultValue: bigquery
defaultValue: ''
description: 'Execution engine to run TF-based
transformations. Currently supports "dataflow" or "bigquery"'
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -13,66 +13,17 @@
# limitations under the License.

"""GA AutoML forecasting components."""
import os

from google_cloud_pipeline_components.v1.automl.forecasting.prophet_trainer import prophet_trainer as ProphetTrainerOp
from google_cloud_pipeline_components.v1.automl.forecasting.utils import get_bqml_arima_predict_pipeline_and_parameters
from google_cloud_pipeline_components.v1.automl.forecasting.utils import get_bqml_arima_train_pipeline_and_parameters
from google_cloud_pipeline_components.v1.automl.forecasting.utils import get_learn_to_learn_forecasting_pipeline_and_parameters
from google_cloud_pipeline_components.v1.automl.forecasting.utils import get_prophet_prediction_pipeline_and_parameters
from google_cloud_pipeline_components.v1.automl.forecasting.utils import get_prophet_train_pipeline_and_parameters
from google_cloud_pipeline_components.v1.automl.forecasting.utils import get_sequence_to_sequence_forecasting_pipeline_and_parameters
from google_cloud_pipeline_components.v1.automl.forecasting.utils import get_temporal_fusion_transformer_forecasting_pipeline_and_parameters
from google_cloud_pipeline_components.v1.automl.forecasting.utils import get_time_series_dense_encoder_forecasting_pipeline_and_parameters
from kfp import components

__all__ = [
'ProphetTrainerOp',
'get_bqml_arima_predict_pipeline_and_parameters',
'get_bqml_arima_train_pipeline_and_parameters',
'get_prophet_prediction_pipeline_and_parameters',
'get_prophet_train_pipeline_and_parameters',
'get_learn_to_learn_forecasting_pipeline_and_parameters',
'get_sequence_to_sequence_forecasting_pipeline_and_parameters',
'get_temporal_fusion_transformer_forecasting_pipeline_and_parameters',
'get_time_series_dense_encoder_forecasting_pipeline_and_parameters',
'learn_to_learn_forecasting_pipeline',
'sequence_to_sequence_forecasting_pipeline',
'temporal_fusion_transformer_forecasting_pipeline',
'time_series_dense_encoder_forecasting_pipeline',
]

learn_to_learn_forecasting_pipeline = components.load_component_from_file(
# Note, please don't name it as `component.yaml` which will conflict with
# the generated file.
os.path.join(
os.path.dirname(__file__), 'learn_to_learn_forecasting_pipeline.yaml'
)
)

sequence_to_sequence_forecasting_pipeline = components.load_component_from_file(
# Note, please don't name it as `component.yaml` which will conflict with
# the generated file.
os.path.join(
os.path.dirname(__file__),
'sequence_to_sequence_forecasting_pipeline.yaml',
)
)

temporal_fusion_transformer_forecasting_pipeline = components.load_component_from_file(
# Note, please don't name it as `component.yaml` which will conflict with
# the generated file.
os.path.join(
os.path.dirname(__file__),
'temporal_fusion_transformer_forecasting_pipeline.yaml',
)
)

time_series_dense_encoder_forecasting_pipeline = components.load_component_from_file(
# Note, please don't name it as `component.yaml` which will conflict with
# the generated file.
os.path.join(
os.path.dirname(__file__),
'time_series_dense_encoder_forecasting_pipeline.yaml',
)
)
Loading

0 comments on commit ab549ef

Please sign in to comment.