Skip to content

Commit

Permalink
Added sample component
Browse files Browse the repository at this point in the history
  • Loading branch information
Ark-kun committed Feb 12, 2019
1 parent cab950c commit 4344806
Show file tree
Hide file tree
Showing 10 changed files with 317 additions and 0 deletions.
5 changes: 5 additions & 0 deletions components/sample/keras/train_classifier/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
ARG BASE_IMAGE_TAG=1.12.0-py3
FROM tensorflow/tensorflow:$BASE_IMAGE_TAG
RUN python3 -m pip install keras
COPY ./src /pipelines/component/src
ENTRYPOINT python3 /pipelines/component/src/train.py
20 changes: 20 additions & 0 deletions components/sample/keras/train_classifier/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
## Train classification model using Keras ##

Usage:

'''
#Load the component
train_op = comp.load_component(url='https://raw.githubusercontent.com/Ark-kun/pipelines/Added-sample-component/components/sample/keras/train_classifier/component.yaml')

#Use the component as part of the pipeline
def pipeline():
train_task = train_op(
training_set_features_path=os.path.join(testdata_root, 'training_set_features.tsv'),
training_set_labels_path=os.path.join(testdata_root, 'training_set_labels.tsv'),
output_model_uri=os.path.join(temp_dir_name, 'outputs/output_model/data'),
model_config=Path(testdata_root).joinpath('model_config.json').read_text(),
number_of_classes=2,
number_of_epochs=10,
batch_size=32,
)
'''
31 changes: 31 additions & 0 deletions components/sample/keras/train_classifier/build_image.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
#!/bin/bash -e
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

image_name=gcr.io/ml-pipeline/sample/keras/train_classifier:latest
image_tag=latest
full_image_name=${image_name}:${image_tag}
base_image_tag=1.12.0-py3

cd "$(dirname "$0")"

docker build --build-arg BASE_IMAGE_TAG=$base_image_tag -t "$full_image_name" .
docker push "$full_image_name"

#Output the strict image name (which contains the sha256 image digest)
#This name can be used by the subsequent steps to refer to the exact image that was built even if another image with the same name was pushed.
image_name_with_digest=$(docker inspect --format="{{index .RepoDigests 0}}" "$IMAGE_NAME")
strict_image_name_output_file=./versions/image_digests_for_tags/$image_tag
mkdir -p "$(dirname "$strict_image_name_output_file")"
echo $image_name_with_digest | tee "$strict_image_name_output_file"
27 changes: 27 additions & 0 deletions components/sample/keras/train_classifier/component.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
name: Keras - Train classifier
description: Trains classifier using Keras sequential model
inputs:
- {name: Training set features path, type: {GcsUri: TSV}, description: 'Local or GCS path to the training set features table.'}
- {name: Training set labels path, type: {GcsUri: TSV}, description: 'Local or GCS path to the training set labels (each label is a class index from 0 to num-classes - 1).'}
- {name: Output model URI, type: {GcsUri: Keras model}, description: 'Local or GCS path specifying where to save the trained model. The model (topology + weights + optimizer state) is saved in HDF5 format and can be loaded back by calling keras.models.load_model'} #Remove GcsUri and move to outputs once artifact passing support is checked in.
- {name: Model config, type: {GcsUri: Keras model config json}, description: 'JSON string containing the serialized model structure. Can be obtained by calling model.to_json() on a Keras model.'}
- {name: Number of classes, type: Integer, description: 'Number of classifier classes.'}
- {name: Number of epochs, type: Integer, default: '100', description: 'Number of epochs to train the model. An epoch is an iteration over the entire `x` and `y` data provided.'}
- {name: Batch size, type: Integer, default: '32', description: 'Number of samples per gradient update.'}
outputs:
- {name: Output model URI, type: {GcsUri: Keras model}, description: 'GCS path where the trained model has been saved. The model (topology + weights + optimizer state) is saved in HDF5 format and can be loaded back by calling keras.models.load_model'} #Remove GcsUri and make it a proper output once artifact passing support is checked in.
implementation:
container:
image: gcr.io/ml-pipeline/sample/keras/train_classifier
command: [python3, /pipelines/component/src/train.py]
args: [
--training-set-features-path, {inputValue: Training set features path},
--training-set-labels-path, {inputValue: Training set labels path},
--output-model-path, {inputValue: Output model URI},
--model-config-json, {inputValue: Model config},
--num-classes, {inputValue: Number of classes},
--num-epochs, {inputValue: Number of epochs},
--batch-size, {inputValue: Batch size},

--output-model-path-file, {outputPath: Output model URI},
]
17 changes: 17 additions & 0 deletions components/sample/keras/train_classifier/run_tests.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
#!/bin/bash -e
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

cd $(dirname $0)
python3 -m unittest discover --verbose --start-dir tests --top-level-directory=..
79 changes: 79 additions & 0 deletions components/sample/keras/train_classifier/src/train.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import json
import os
from pathlib import Path

import keras
import numpy as np

parser = argparse.ArgumentParser(description='Train classifier model using Keras')

parser.add_argument('--training-set-features-path', type=str, help='Local or GCS path to the training set features table.')
parser.add_argument('--training-set-labels-path', type=str, help='Local or GCS path to the training set labels (each label is a class index from 0 to num-classes - 1).')
parser.add_argument('--output-model-path', type=str, help='Local or GCS path specifying where to save the trained model. The model (topology + weights + optimizer state) is saved in HDF5 format and can be loaded back by calling keras.models.load_model')
parser.add_argument('--model-config-json', type=str, help='JSON string containing the serialized model structure. Can be obtained by calling model.to_json() on a Keras model.')
parser.add_argument('--num-classes', type=int, help='Number of classifier classes.')
parser.add_argument('--num-epochs', type=int, default=100, help='Number of epochs to train the model. An epoch is an iteration over the entire `x` and `y` data provided.')
parser.add_argument('--batch-size', type=int, default=32, help='Number of samples per gradient update.')

parser.add_argument('--output-model-path-file', type=str, help='Path to a local file containing the output model URI. Needed for data passing until the artifact support is checked in.') #TODO: Remove after the team agrees to let me check in artifact support.
args = parser.parse_args()

# The data, split between train and test sets:
#(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = np.loadtxt(args.training_set_features_path)
y_train = np.loadtxt(args.training_set_labels_path)
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')

# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, args.num_classes)

model = keras.models.model_from_json(args.model_config_json)

model.add(keras.layers.Activation('softmax'))

# initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)

# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])

x_train = x_train.astype('float32')
x_train /= 255

model.fit(
x_train,
y_train,
batch_size=args.batch_size,
epochs=args.num_epochs,
shuffle=True
)

# Save model and weights
if not args.output_model_path.startswith('gs://'):
save_dir = os.path.dirname(args.output_model_path)
if not os.path.isdir(save_dir):
os.makedirs(save_dir)

model.save(args.output_model_path)
print('Saved trained model at %s ' % args.output_model_path)

Path(args.output_model_path_file).parent.mkdir(parents=True, exist_ok=True)
Path(args.output_model_path_file).write_text(args.output_model_path)
64 changes: 64 additions & 0 deletions components/sample/keras/train_classifier/tests/test_component.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import subprocess
import tempfile
import unittest
from contextlib import contextmanager
from pathlib import Path

import kfp.components as comp

@contextmanager
def components_local_output_dir_context(output_dir: str):
old_dir = comp._components._outputs_dir
try:
comp._components._outputs_dir = output_dir
yield output_dir
finally:
comp._components._outputs_dir = old_dir

class KerasTrainClassifierTestCase(unittest.TestCase):
def test_handle_training_xor(self):
tests_root = os.path.abspath(os.path.dirname(__file__))
component_root = os.path.abspath(os.path.join(tests_root, '..'))
testdata_root = os.path.abspath(os.path.join(tests_root, 'testdata'))

train_op = comp.load_component(os.path.join(component_root, 'component.yaml'))

with tempfile.TemporaryDirectory() as temp_dir_name:
with components_local_output_dir_context(temp_dir_name):
train_task = train_op(
training_set_features_path=os.path.join(testdata_root, 'training_set_features.tsv'),
training_set_labels_path=os.path.join(testdata_root, 'training_set_labels.tsv'),
output_model_uri=os.path.join(temp_dir_name, 'outputs/output_model/data'),
model_config=Path(testdata_root).joinpath('model_config.json').read_text(),
number_of_classes=2,
number_of_epochs=10,
batch_size=32,
)

full_command = train_task.command + train_task.arguments
full_command[0] = 'python'
full_command[1] = os.path.join(component_root, 'src', 'train.py')

process = subprocess.run(full_command)

(output_model_uri_file, ) = (train_task.file_outputs['output-model-uri'], )
output_model_uri = Path(output_model_uri_file).read_text()


if __name__ == '__main__':
unittest.main()
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
{
"class_name": "Sequential",
"config": {
"name": "sequential_1",
"layers": [
{
"class_name": "Dense",
"config": {
"name": "dense_1",
"trainable": true,
"units": 2,
"activation": "linear",
"use_bias": true,
"kernel_initializer": {
"class_name": "VarianceScaling",
"config": {
"scale": 1.0,
"mode": "fan_avg",
"distribution": "uniform",
"seed": null
}
},
"bias_initializer": {
"class_name": "Zeros",
"config": {}
},
"kernel_regularizer": null,
"bias_regularizer": null,
"activity_regularizer": null,
"kernel_constraint": null,
"bias_constraint": null
}
},
{
"class_name": "Dense",
"config": {
"name": "dense_2",
"trainable": true,
"units": 2,
"activation": "linear",
"use_bias": true,
"kernel_initializer": {
"class_name": "VarianceScaling",
"config": {
"scale": 1.0,
"mode": "fan_avg",
"distribution": "uniform",
"seed": null
}
},
"bias_initializer": {
"class_name": "Zeros",
"config": {}
},
"kernel_regularizer": null,
"bias_regularizer": null,
"activity_regularizer": null,
"kernel_constraint": null,
"bias_constraint": null
}
}
]
},
"keras_version": "2.2.4",
"backend": "tensorflow"
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
0 0
0 1
1 0
1 1
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
0
1
1
0

0 comments on commit 4344806

Please sign in to comment.