Skip to content

Commit

Permalink
File metrics collector end to end test (#832)
Browse files Browse the repository at this point in the history
  • Loading branch information
hougangliu authored and k8s-ci-robot committed Sep 29, 2019
1 parent afaf252 commit fbf0726
Show file tree
Hide file tree
Showing 7 changed files with 285 additions and 28 deletions.
6 changes: 6 additions & 0 deletions examples/v1alpha3/file-metrics-collector/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
FROM pytorch/pytorch:1.0-cuda10.0-cudnn7-runtime

WORKDIR /var
ADD mnist.py /var

ENTRYPOINT ["python", "/var/mnist.py"]
148 changes: 148 additions & 0 deletions examples/v1alpha3/file-metrics-collector/mnist.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,148 @@
from __future__ import print_function

import argparse
import logging
import os

from torchvision import datasets, transforms
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

WORLD_SIZE = int(os.environ.get('WORLD_SIZE', 1))

logging.basicConfig(filename='/katib/mnist.log', level=logging.DEBUG)

class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, 10)

def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)

def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
msg = 'Train Epoch: {} [{}/{} ({:.0f}%)]\tloss={:.4f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item())
print(msg)
logging.debug(msg)
niter = epoch * len(train_loader) + batch_idx

def test(args, model, device, test_loader, epoch):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)
logging.info('\naccuracy={:.4f}\n'.format(float(correct) / len(test_loader.dataset)))


def should_distribute():
return dist.is_available() and WORLD_SIZE > 1


def is_distributed():
return dist.is_available() and dist.is_initialized()


def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
if dist.is_available():
parser.add_argument('--backend', type=str, help='Distributed backend',
choices=[dist.Backend.GLOO, dist.Backend.NCCL, dist.Backend.MPI],
default=dist.Backend.GLOO)
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
if use_cuda:
print('Using CUDA')

torch.manual_seed(args.seed)

device = torch.device("cuda" if use_cuda else "cpu")

if should_distribute():
print('Using distributed PyTorch with {} backend'.format(args.backend))
dist.init_process_group(backend=args.backend)

kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=False, **kwargs)

model = Net().to(device)

if is_distributed():
Distributor = nn.parallel.DistributedDataParallel if use_cuda \
else nn.parallel.DistributedDataParallelCPU
model = Distributor(model)

optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)

for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader, epoch)

if (args.save_model):
torch.save(model.state_dict(),"mnist_cnn.pt")

if __name__ == '__main__':
main()

60 changes: 60 additions & 0 deletions examples/v1alpha3/file-metricscollector-example.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
apiVersion: "kubeflow.org/v1alpha3"
kind: Experiment
metadata:
namespace: kubeflow
labels:
controller-tools.k8s.io: "1.0"
name: file-metricscollector-example
spec:
objective:
type: maximize
goal: 0.99
objectiveMetricName: accuracy
metricsCollectorSpec:
source:
fileSystemPath:
path: "/katib/mnist.log"
kind: File
collector:
kind: File
algorithm:
algorithmName: random
parallelTrialCount: 3
maxTrialCount: 12
maxFailedTrialCount: 3
parameters:
- name: --lr
parameterType: double
feasibleSpace:
min: "0.01"
max: "0.03"
- name: --momentum
parameterType: double
feasibleSpace:
min: "0.3"
max: "0.7"
trialTemplate:
goTemplate:
rawTemplate: |-
apiVersion: batch/v1
kind: Job
metadata:
name: {{.Trial}}
namespace: {{.NameSpace}}
spec:
template:
spec:
containers:
- name: {{.Trial}}
image: docker.io/liuhougangxa/pytorch-mnist:1.0
imagePullPolicy: Always
command:
- "python"
- "/var/mnist.py"
- "--epochs=1"
{{- with .HyperParameters}}
{{- range .}}
- "{{.Name}}={{.Value}}"
{{- end}}
{{- end}}
restartPolicy: Never
14 changes: 0 additions & 14 deletions examples/v1alpha3/tfevent-volume/tfevent-pv.yaml

This file was deleted.

14 changes: 0 additions & 14 deletions examples/v1alpha3/tfevent-volume/tfevent-pvc.yaml

This file was deleted.

64 changes: 64 additions & 0 deletions test/scripts/v1alpha3/run-file-metricscollector.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
#!/bin/bash

# Copyright 2018 The Kubernetes Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This shell script is used to build a cluster and create a namespace from our
# argo workflow

set -o errexit
set -o nounset
set -o pipefail

CLUSTER_NAME="${CLUSTER_NAME}"
ZONE="${GCP_ZONE}"
PROJECT="${GCP_PROJECT}"
NAMESPACE="${DEPLOY_NAMESPACE}"
REGISTRY="${GCP_REGISTRY}"
GO_DIR=${GOPATH}/src/github.com/${REPO_OWNER}/${REPO_NAME}

echo "Activating service-account"
gcloud auth activate-service-account --key-file=${GOOGLE_APPLICATION_CREDENTIALS}

echo "Configuring kubectl"

echo "CLUSTER_NAME: ${CLUSTER_NAME}"
echo "ZONE: ${GCP_ZONE}"
echo "PROJECT: ${GCP_PROJECT}"

gcloud --project ${PROJECT} container clusters get-credentials ${CLUSTER_NAME} \
--zone ${ZONE}
kubectl config set-context $(kubectl config current-context) --namespace=default
USER=`gcloud config get-value account`

echo "All Katib components are running."
kubectl version
kubectl cluster-info
echo "Katib deployments"
kubectl -n kubeflow get deploy
echo "Katib services"
kubectl -n kubeflow get svc
echo "Katib pods"
kubectl -n kubeflow get pod

cd ${GO_DIR}/test/e2e/v1alpha3

echo "Running e2e file metricscollector experiment"
export KUBECONFIG=$HOME/.kube/config
./run-e2e-experiment ../../../examples/v1alpha3/file-metricscollector-example.yaml
kubectl -n kubeflow describe suggestion
kubectl delete -f ../../../examples/v1alpha3/file-metricscollector-example.yaml
kubectl describe pods
kubectl describe deploy
exit 0
7 changes: 7 additions & 0 deletions test/workflows/components/workflows-v1alpha3.libsonnet
Original file line number Diff line number Diff line change
Expand Up @@ -275,6 +275,10 @@
name: "run-grid-e2e-tests",
template: "run-grid-e2e-tests",
},
{
name: "run-file-metricscollector-e2e-tests",
template: "run-file-metricscollector-e2e-tests",
},
{
name: "run-bayesian-e2e-tests",
template: "run-bayesian-e2e-tests",
Expand Down Expand Up @@ -355,6 +359,9 @@
$.parts(namespace, name, overrides).e2e(prow_env, bucket).buildTemplate("run-bayesian-e2e-tests", testWorkerImage, [
"test/scripts/v1alpha3/run-suggestion-bayesian.sh",
]), // run bayesian algorithm
$.parts(namespace, name, overrides).e2e(prow_env, bucket).buildTemplate("run-file-metricscollector-e2e-tests", testWorkerImage, [
"test/scripts/v1alpha3/run-file-metricscollector.sh",
]), // run file metrics collector test
$.parts(namespace, name, overrides).e2e(prow_env, bucket).buildTemplate("create-pr-symlink", testWorkerImage, [
"python",
"-m",
Expand Down

0 comments on commit fbf0726

Please sign in to comment.