-
Notifications
You must be signed in to change notification settings - Fork 455
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
File metrics collector end to end test (#832)
- Loading branch information
1 parent
afaf252
commit fbf0726
Showing
7 changed files
with
285 additions
and
28 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
FROM pytorch/pytorch:1.0-cuda10.0-cudnn7-runtime | ||
|
||
WORKDIR /var | ||
ADD mnist.py /var | ||
|
||
ENTRYPOINT ["python", "/var/mnist.py"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
from __future__ import print_function | ||
|
||
import argparse | ||
import logging | ||
import os | ||
|
||
from torchvision import datasets, transforms | ||
import torch | ||
import torch.distributed as dist | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
|
||
WORLD_SIZE = int(os.environ.get('WORLD_SIZE', 1)) | ||
|
||
logging.basicConfig(filename='/katib/mnist.log', level=logging.DEBUG) | ||
|
||
class Net(nn.Module): | ||
def __init__(self): | ||
super(Net, self).__init__() | ||
self.conv1 = nn.Conv2d(1, 20, 5, 1) | ||
self.conv2 = nn.Conv2d(20, 50, 5, 1) | ||
self.fc1 = nn.Linear(4*4*50, 500) | ||
self.fc2 = nn.Linear(500, 10) | ||
|
||
def forward(self, x): | ||
x = F.relu(self.conv1(x)) | ||
x = F.max_pool2d(x, 2, 2) | ||
x = F.relu(self.conv2(x)) | ||
x = F.max_pool2d(x, 2, 2) | ||
x = x.view(-1, 4*4*50) | ||
x = F.relu(self.fc1(x)) | ||
x = self.fc2(x) | ||
return F.log_softmax(x, dim=1) | ||
|
||
def train(args, model, device, train_loader, optimizer, epoch): | ||
model.train() | ||
for batch_idx, (data, target) in enumerate(train_loader): | ||
data, target = data.to(device), target.to(device) | ||
optimizer.zero_grad() | ||
output = model(data) | ||
loss = F.nll_loss(output, target) | ||
loss.backward() | ||
optimizer.step() | ||
if batch_idx % args.log_interval == 0: | ||
msg = 'Train Epoch: {} [{}/{} ({:.0f}%)]\tloss={:.4f}'.format( | ||
epoch, batch_idx * len(data), len(train_loader.dataset), | ||
100. * batch_idx / len(train_loader), loss.item()) | ||
print(msg) | ||
logging.debug(msg) | ||
niter = epoch * len(train_loader) + batch_idx | ||
|
||
def test(args, model, device, test_loader, epoch): | ||
model.eval() | ||
test_loss = 0 | ||
correct = 0 | ||
with torch.no_grad(): | ||
for data, target in test_loader: | ||
data, target = data.to(device), target.to(device) | ||
output = model(data) | ||
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss | ||
pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability | ||
correct += pred.eq(target.view_as(pred)).sum().item() | ||
|
||
test_loss /= len(test_loader.dataset) | ||
logging.info('\naccuracy={:.4f}\n'.format(float(correct) / len(test_loader.dataset))) | ||
|
||
|
||
def should_distribute(): | ||
return dist.is_available() and WORLD_SIZE > 1 | ||
|
||
|
||
def is_distributed(): | ||
return dist.is_available() and dist.is_initialized() | ||
|
||
|
||
def main(): | ||
# Training settings | ||
parser = argparse.ArgumentParser(description='PyTorch MNIST Example') | ||
parser.add_argument('--batch-size', type=int, default=64, metavar='N', | ||
help='input batch size for training (default: 64)') | ||
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', | ||
help='input batch size for testing (default: 1000)') | ||
parser.add_argument('--epochs', type=int, default=10, metavar='N', | ||
help='number of epochs to train (default: 10)') | ||
parser.add_argument('--lr', type=float, default=0.01, metavar='LR', | ||
help='learning rate (default: 0.01)') | ||
parser.add_argument('--momentum', type=float, default=0.5, metavar='M', | ||
help='SGD momentum (default: 0.5)') | ||
parser.add_argument('--no-cuda', action='store_true', default=False, | ||
help='disables CUDA training') | ||
parser.add_argument('--seed', type=int, default=1, metavar='S', | ||
help='random seed (default: 1)') | ||
parser.add_argument('--log-interval', type=int, default=10, metavar='N', | ||
help='how many batches to wait before logging training status') | ||
parser.add_argument('--save-model', action='store_true', default=False, | ||
help='For Saving the current Model') | ||
if dist.is_available(): | ||
parser.add_argument('--backend', type=str, help='Distributed backend', | ||
choices=[dist.Backend.GLOO, dist.Backend.NCCL, dist.Backend.MPI], | ||
default=dist.Backend.GLOO) | ||
args = parser.parse_args() | ||
use_cuda = not args.no_cuda and torch.cuda.is_available() | ||
if use_cuda: | ||
print('Using CUDA') | ||
|
||
torch.manual_seed(args.seed) | ||
|
||
device = torch.device("cuda" if use_cuda else "cpu") | ||
|
||
if should_distribute(): | ||
print('Using distributed PyTorch with {} backend'.format(args.backend)) | ||
dist.init_process_group(backend=args.backend) | ||
|
||
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} | ||
train_loader = torch.utils.data.DataLoader( | ||
datasets.MNIST('../data', train=True, download=True, | ||
transform=transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.1307,), (0.3081,)) | ||
])), | ||
batch_size=args.batch_size, shuffle=True, **kwargs) | ||
test_loader = torch.utils.data.DataLoader( | ||
datasets.MNIST('../data', train=False, transform=transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.1307,), (0.3081,)) | ||
])), | ||
batch_size=args.test_batch_size, shuffle=False, **kwargs) | ||
|
||
model = Net().to(device) | ||
|
||
if is_distributed(): | ||
Distributor = nn.parallel.DistributedDataParallel if use_cuda \ | ||
else nn.parallel.DistributedDataParallelCPU | ||
model = Distributor(model) | ||
|
||
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) | ||
|
||
for epoch in range(1, args.epochs + 1): | ||
train(args, model, device, train_loader, optimizer, epoch) | ||
test(args, model, device, test_loader, epoch) | ||
|
||
if (args.save_model): | ||
torch.save(model.state_dict(),"mnist_cnn.pt") | ||
|
||
if __name__ == '__main__': | ||
main() | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
apiVersion: "kubeflow.org/v1alpha3" | ||
kind: Experiment | ||
metadata: | ||
namespace: kubeflow | ||
labels: | ||
controller-tools.k8s.io: "1.0" | ||
name: file-metricscollector-example | ||
spec: | ||
objective: | ||
type: maximize | ||
goal: 0.99 | ||
objectiveMetricName: accuracy | ||
metricsCollectorSpec: | ||
source: | ||
fileSystemPath: | ||
path: "/katib/mnist.log" | ||
kind: File | ||
collector: | ||
kind: File | ||
algorithm: | ||
algorithmName: random | ||
parallelTrialCount: 3 | ||
maxTrialCount: 12 | ||
maxFailedTrialCount: 3 | ||
parameters: | ||
- name: --lr | ||
parameterType: double | ||
feasibleSpace: | ||
min: "0.01" | ||
max: "0.03" | ||
- name: --momentum | ||
parameterType: double | ||
feasibleSpace: | ||
min: "0.3" | ||
max: "0.7" | ||
trialTemplate: | ||
goTemplate: | ||
rawTemplate: |- | ||
apiVersion: batch/v1 | ||
kind: Job | ||
metadata: | ||
name: {{.Trial}} | ||
namespace: {{.NameSpace}} | ||
spec: | ||
template: | ||
spec: | ||
containers: | ||
- name: {{.Trial}} | ||
image: docker.io/liuhougangxa/pytorch-mnist:1.0 | ||
imagePullPolicy: Always | ||
command: | ||
- "python" | ||
- "/var/mnist.py" | ||
- "--epochs=1" | ||
{{- with .HyperParameters}} | ||
{{- range .}} | ||
- "{{.Name}}={{.Value}}" | ||
{{- end}} | ||
{{- end}} | ||
restartPolicy: Never |
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
#!/bin/bash | ||
|
||
# Copyright 2018 The Kubernetes Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
# This shell script is used to build a cluster and create a namespace from our | ||
# argo workflow | ||
|
||
set -o errexit | ||
set -o nounset | ||
set -o pipefail | ||
|
||
CLUSTER_NAME="${CLUSTER_NAME}" | ||
ZONE="${GCP_ZONE}" | ||
PROJECT="${GCP_PROJECT}" | ||
NAMESPACE="${DEPLOY_NAMESPACE}" | ||
REGISTRY="${GCP_REGISTRY}" | ||
GO_DIR=${GOPATH}/src/github.com/${REPO_OWNER}/${REPO_NAME} | ||
|
||
echo "Activating service-account" | ||
gcloud auth activate-service-account --key-file=${GOOGLE_APPLICATION_CREDENTIALS} | ||
|
||
echo "Configuring kubectl" | ||
|
||
echo "CLUSTER_NAME: ${CLUSTER_NAME}" | ||
echo "ZONE: ${GCP_ZONE}" | ||
echo "PROJECT: ${GCP_PROJECT}" | ||
|
||
gcloud --project ${PROJECT} container clusters get-credentials ${CLUSTER_NAME} \ | ||
--zone ${ZONE} | ||
kubectl config set-context $(kubectl config current-context) --namespace=default | ||
USER=`gcloud config get-value account` | ||
|
||
echo "All Katib components are running." | ||
kubectl version | ||
kubectl cluster-info | ||
echo "Katib deployments" | ||
kubectl -n kubeflow get deploy | ||
echo "Katib services" | ||
kubectl -n kubeflow get svc | ||
echo "Katib pods" | ||
kubectl -n kubeflow get pod | ||
|
||
cd ${GO_DIR}/test/e2e/v1alpha3 | ||
|
||
echo "Running e2e file metricscollector experiment" | ||
export KUBECONFIG=$HOME/.kube/config | ||
./run-e2e-experiment ../../../examples/v1alpha3/file-metricscollector-example.yaml | ||
kubectl -n kubeflow describe suggestion | ||
kubectl delete -f ../../../examples/v1alpha3/file-metricscollector-example.yaml | ||
kubectl describe pods | ||
kubectl describe deploy | ||
exit 0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters