- Install dependencies
conda env create -f environment.yml -n envname - Run an experiment using
python3 main.py +experiment=exp_name - Check out the results of your runs using
mlflow ui - Reload your experiment and execute evaluations by specifying the run id
exp_id: idand running the evaluation pipelinepython3 evaluation.py +experiment=exp_name
Train model with default configuration
# default
python run.py
# train on CPU
python run.py trainer.gpus=0
# train on GPU
python run.py trainer.gpus=1Train model with chosen experiment configuration from configs/experiment/
python run.py +experiment=experiment_nameYou can override any parameter from command line like this
python run.py trainer.max_epochs=20 datamodule.batch_size=64Inspirations
This template was inspired by:
ashleve/lightning-hydra-template,
PyTorchLightning/deep-learninig-project-template,