Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 8 additions & 8 deletions en/docs/chapter_tree/binary_tree_traversal.md
Original file line number Diff line number Diff line change
@@ -1,14 +1,14 @@
# Binary tree traversal

From the perspective of physical structure, a tree is a data structure based on linked lists, hence its traversal method involves accessing nodes one by one through pointers. However, a tree is a non-linear data structure, which makes traversing a tree more complex than traversing a linked list, requiring the assistance of search algorithms to achieve.
From a physical structure perspective, a tree is a data structure based on linked lists. Hence, its traversal method involves accessing nodes one by one through pointers. However, a tree is a non-linear data structure, which makes traversing a tree more complex than traversing a linked list, requiring the assistance of search algorithms.

Common traversal methods for binary trees include level-order traversal, pre-order traversal, in-order traversal, and post-order traversal, among others.
The common traversal methods for binary trees include level-order traversal, pre-order traversal, in-order traversal, and post-order traversal.

## Level-order traversal

As shown in the figure below, <u>level-order traversal</u> traverses the binary tree from top to bottom, layer by layer, and accesses nodes in each layer in a left-to-right order.
As shown in the figure below, <u>level-order traversal</u> traverses the binary tree from top to bottom, layer by layer. Within each level, it visits nodes from left to right.

Level-order traversal essentially belongs to <u>breadth-first traversal</u>, also known as <u>breadth-first search (BFS)</u>, which embodies a "circumferentially outward expanding" layer-by-layer traversal method.
Level-order traversal is essentially a type of <u>breadth-first traversal</u>, also known as <u>breadth-first search (BFS)</u>, which embodies a "circumferentially outward expanding" layer-by-layer traversal method.

![Level-order traversal of a binary tree](binary_tree_traversal.assets/binary_tree_bfs.png)

Expand All @@ -22,14 +22,14 @@ Breadth-first traversal is usually implemented with the help of a "queue". The q

### Complexity analysis

- **Time complexity is $O(n)$**: All nodes are visited once, using $O(n)$ time, where $n$ is the number of nodes.
- **Space complexity is $O(n)$**: In the worst case, i.e., a full binary tree, before traversing to the lowest level, the queue can contain at most $(n + 1) / 2$ nodes at the same time, occupying $O(n)$ space.
- **Time complexity is $O(n)$**: All nodes are visited once, taking $O(n)$ time, where $n$ is the number of nodes.
- **Space complexity is $O(n)$**: In the worst case, i.e., a full binary tree, before traversing to the bottom level, the queue can contain at most $(n + 1) / 2$ nodes simultaneously, occupying $O(n)$ space.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe lowest level will be better

You can check its usage here

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you, I would keep this one based on ref


## Preorder, in-order, and post-order traversal

Correspondingly, pre-order, in-order, and post-order traversal all belong to <u>depth-first traversal</u>, also known as <u>depth-first search (DFS)</u>, which embodies a "proceed to the end first, then backtrack and continue" traversal method.

The figure below shows the working principle of performing a depth-first traversal on a binary tree. **Depth-first traversal is like walking around the perimeter of the entire binary tree**, encountering three positions at each node, corresponding to pre-order traversal, in-order traversal, and post-order traversal.
The figure below shows the working principle of performing a depth-first traversal on a binary tree. **Depth-first traversal is like "walking" around the entire binary tree**, encountering three positions at each node, corresponding to pre-order, in-order, and post-order traversal.

![Preorder, in-order, and post-order traversal of a binary search tree](binary_tree_traversal.assets/binary_tree_dfs.png)

Expand Down Expand Up @@ -86,4 +86,4 @@ The figure below shows the recursive process of pre-order traversal of a binary
### Complexity analysis

- **Time complexity is $O(n)$**: All nodes are visited once, using $O(n)$ time.
- **Space complexity is $O(n)$**: In the worst case, i.e., the tree degrades into a linked list, the recursion depth reaches $n$, the system occupies $O(n)$ stack frame space.
- **Space complexity is $O(n)$**: In the worst case, i.e., the tree degenerates into a linked list, the recursion depth reaches $n$, the system occupies $O(n)$ stack frame space.