This demo showcases a chatbot built with Quarkus-LangChain4j and Kotlin, powered by Large Language Models and Retrieval-Augmented Generation (RAG).
See also Links Page.
The application uses WebSocket for real-time communication, Easy RAG with Redis store for document retrieval, and integrates with local and Model Control Protocol (MCP) Tools. Moderation is handled in parallel to ensure responsive and safe interactions. Sentiment analysis is performed asynchronously, demonstrating integrating external business processes.
This example demonstrates how to create a financial assistant chatbot with Retrieval Augmented Generation (RAG) using
quarkus-langchain4j and Kotlin, specifically utilizing the Easy RAG extension.
For more information about Easy RAG, refer to the file
docs/modules/ROOT/pages/easy-rag.adoc.
A prerequisite to running this example is to provide your OpenAI API key.
You may either set the environment variable:
export QUARKUS_LANGCHAIN4J_OPENAI_API_KEY=<your-openai-api-key>or create an .env file in the root of the project with the following content:
QUARKUS_LANGCHAIN4J_OPENAI_API_KEY=<your-openai-api-key>You may copy and modify the existing template:
cp -n sample.env .env and edit the .env file with your OpenAI API key.
Then, simply run the project in Dev mode:
mvn quarkus:dev
(cd mcp && mvn quarkus:dev)or just
make run-mcpYou may inspect the MCP server running at http://localhost:8090/mcp/sse with MCP Inspector:
npx @modelcontextprotocol/inspectorOpen your browser and navigate to http://localhost:8080. Click the red robot in the bottom right corner to open the chat window.
The chatbot is a financial assistant that:
- Answers questions about financial products using information retrieved from documents
- Provides current stock prices for selected companies (AAPL, GOOG, MSFT)
- Analyzes sentiment in user messages
- Content moderation: Detects malicious content in user messages and sends a warning by email, if detected
The app is configured to look for your financial product documents in a catalog directory relative to the current working directory.
mkdir -p src/main/resources/catalog
# Add your financial product documents (PDF, TXT, etc.) to this directory
The application will use the Easy RAG extension to process these documents and retrieve relevant information when answering questions.
Add quarkus.langchain4j.openai.base-url=http://yourerver to application.properties.
In this case, quarkus.langchain4j.openai.api-key is generally not needed.
Replace:
<dependency>
<groupId>io.quarkiverse.langchain4j</groupId>
<artifactId>quarkus-langchain4j-openai</artifactId>
<version>${quarkus-langchain4j.version}</version>
</dependency>with
<dependency>
<groupId>io.quarkiverse.langchain4j</groupId>
<artifactId>quarkus-langchain4j-ollama</artifactId>
<version>${quarkus-langchain4j.version}</version>
</dependency>otel-tul - A terminal OpenTelemetry viewer
#brew install otel-tui
otel-tuiIntegration tests verify component interactions using @QuarkusTest with full application context.
See SentimentAnalyzerTest.kt as an example.
-
Install promptfoo:
brew install promptfoo
-
Set up environment:
cp -n promptfoo/sample.env promptfoo/.env
Then edit
promptfoo/.envwith your OpenAI API key -
Start the application:
mvn quarkus:dev
cd promptfoo
promptfoo eval --watch --output output.yml --env-file ./.envor
make promptfoocd promptfoo
promptfoo eval --output results.json --env-file ./.envcd promptfoo
promptfoo viewmake promptfoo-uiThe evaluation will run 4 test suites:
- Chat Memory - Context retention across messages
- Time Tool - MCP time service integration
- Stock Data - MarketData tool functionality
- Moderation - Content safety validation
All tests include latency assertions (< 5000ms).
See Links Page.


