Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 37 additions & 0 deletions dsu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
class DSU:
def __init__(self, n):
self.parent = list(range(n))
self.rank = [0] * n

def find(self, x):
if self.parent[x] != x:
self.parent[x] = self.find(self.parent[x])
return self.parent[x]

def union(self, x, y):
root_x, root_y = self.find(x), self.find(y)
if root_x == root_y:
return
if self.rank[root_x] > self.rank[root_y]:
self.parent[root_y] = root_x
elif self.rank[root_x] < self.rank[root_y]:
self.parent[root_x] = root_y
else:
self.parent[root_y] = root_x
self.rank[root_x] += 1

def kruskal_mst(graph):
v = len(graph.edges)
dsu = DSU(v)
edges = sorted(graph.edges, key=lambda edge: edge.weight)
mst_edges = []
total_weight = 0

for edge in edges:
x, y = dsu.find(edge.src), dsu.find(edge.dest)
if x != y:
mst_edges.append(edge)
total_weight += edge.weight
dsu.union(x, y)

return mst_edges, total_weight
64 changes: 64 additions & 0 deletions graph.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
import heapq

class Graph:
def __init__(self, vertices):
self.V = vertices
self.graph = []

def add_edge(self, u, v, w):
self.graph.append([u, v, w])

def find(self, parent, i):
if parent[i] == i:
return i
return self.find(parent, parent[i])

def union(self, parent, rank, x, y):
xroot = self.find(parent, x)
yroot = self.find(parent, y)

if rank[xroot] < rank[yroot]:
parent[xroot] = yroot
elif rank[xroot] > rank[yroot]:
parent[yroot] = xroot
else:
parent[yroot] = xroot
rank[xroot] += 1

def kruskal_mst(self):
result = []
i, e = 0, 0
self.graph = sorted(self.graph, key=lambda item: item[2])
parent = []
rank = []

for node in range(self.V):
parent.append(node)
rank.append(0)

while e < self.V - 1:
u, v, w = self.graph[i]
i = i + 1
x = self.find(parent, u)
y = self.find(parent, v)

if x != y:
e = e + 1
result.append([u, v, w])
self.union(parent, rank, x, y)

return result, sum([edge[2] for edge in result])

if __name__ == "__main__":
g = Graph(4)
g.add_edge(0, 1, 10)
g.add_edge(1, 2, 15)
g.add_edge(2, 0, 5)
g.add_edge(1, 3, 20)
g.add_edge(3, 2, 25)

mst, weight = g.kruskal_mst()
print("Edges in the MST are:")
for edge in mst:
print(f"{edge[0]}, {edge[1]}")
print(f"Minimum weight: {weight}")
53 changes: 53 additions & 0 deletions test_kruskal.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
import heapq

def initialize_sets(n):
"""Initialize n disjoint sets."""
return [i for i in range(n)]

def find_set(rep, i):
"""Find the set that i belongs to."""
if rep[i] == i:
return i
return find_set(rep, rep[i])

def union_sets(rep, rank, x, y):
"""Merge the sets containing x and y."""
xroot = find_set(rep, x)
yroot = find_set(rep, y)

if rank[xroot] < rank[yroot]:
rep[xroot] = yroot
elif rank[xroot] > rank[yroot]:
rep[yroot] = xroot
else:
rep[yroot] = xroot
rank[xroot] += 1

def kruskal(graph):
"""Find the minimum spanning tree using Kruskal's algorithm."""
v = graph.vertices()
e = graph.edges()

# Initialize the Disjoint Set Union (DSU) data structure
rep = initialize_sets(v)
rank = [0 for _ in range(v)]

# Sort the edges by weight
edges = sorted(e, key=lambda edge: edge.weight)

# Initialize the visited array and the MST
visited = [False for _ in range(e)]
mst_weight = 0

# Iterate through the sorted edges
for edge in edges:
x = find_set(rep, edge.start)
y = find_set(rep, edge.end)

# If the edge doesn't form a cycle, add it to the MST
if x != y:
union_sets(rep, rank, x, y)
visited[edge.index] = True
mst_weight += edge.weight

return mst_weight, visited