Skip to content

[Agentic Phase 1] Integrate agents into find_code pipeline #124

@bashandbone

Description

@bashandbone

Phase 1: Agent Integration

Parent Epic: #123
Depends On: DI Phase 3 (#119) for agent injection
Target: v0.3
Risk Level: Medium

Integrate pydantic-ai agents into the find_code search pipeline to enable intelligent query understanding and strategy selection.

Goals

  • Agent-driven query refinement
  • Intelligent search strategy selection
  • Tool integration for code-aware reasoning
  • Seamless integration with existing search pipeline

Current State

Scaffolded infrastructure in:

  • codeweaver.providers.agent - Thin pydantic-ai wrapper
  • Registry integration ready

Implementation Checklist

Agent Setup

  • Define agent profiles for code search tasks
    • Query understanding agent
    • Strategy selection agent
    • Result synthesis agent
  • Configure agent models and parameters
  • Implement agent toolsets for code operations

find_code Pipeline Integration

  • Add agent injection points in search pipeline
  • Implement query preprocessing with agents
  • Agent-based strategy selection
    • Semantic vs lexical vs hybrid decisions
    • Chunking strategy selection
    • Filter generation
  • Result post-processing with agents
    • Relevance scoring
    • Result explanation
    • Answer synthesis

Toolsets for Code Awareness

  • File structure analysis tools
  • Code pattern recognition tools
  • Symbol lookup tools
  • Documentation retrieval tools
  • Language-specific reasoning tools

Testing

  • Unit tests for agent components
  • Integration tests with find_code
  • Performance benchmarks (latency impact)
  • Quality metrics (search relevance improvement)

Configuration

  • Agent enable/disable flags
  • Model selection per agent role
  • Fallback behavior when agents unavailable
  • Cost/latency optimization settings

Success Criteria

  • Agents successfully enhance query understanding
  • Strategy selection improves result quality
  • Performance degradation < 2x baseline
  • Tests passing
  • Documentation complete
  • User-facing agent behavior is transparent

Example Use Cases

  1. Natural language query: "Find authentication logic" → Agent identifies security-related patterns
  2. Ambiguous query: "login" → Agent determines whether to search for function, UI, or flow
  3. Complex query: "How does error handling work?" → Agent orchestrates multi-file analysis

Reference

  • Scaffolded code: src/codeweaver/providers/agent/
  • Registry: src/codeweaver/common/registry/provider.py

Metadata

Metadata

Assignees

No one assigned

    Projects

    No projects

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions