https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
Table of Contents
- Python >= 3.6
- PyTorch >= 0.4
- Clear folder structure which is suitable for many deep learning projects.
- .json config file support for more convenient parameter tuning.
- Checkpoint saving and resuming.
- Abstract base classes for faster development: * BaseTrainer handles checkpoint saving/resuming, training process logging, and more. * BaseDataLoader handles batch generation, data shuffling, and validation data splitting. * BaseModel provides basic model summary.
cookiecutter-pytorch/ │ ├── <project name>/ │ │ │ ├── cli.py - command line interface │ ├── main.py - main script to start train/test │ │ │ ├── base/ - abstract base classes │ │ ├── base_data_loader.py - abstract base class for data loaders │ │ ├── base_model.py - abstract base class for models │ │ └── base_trainer.py - abstract base class for trainers │ │ │ ├── data_loader/ - anything about data loading goes here │ │ └── data_loaders.py │ │ │ ├── model/ - models, losses, and metrics │ │ ├── loss.py │ │ ├── metric.py │ │ └── model.py │ │ │ ├── trainer/ - trainers │ │ └── trainer.py │ │ │ └── utils/ │ ├── util.py │ ├── logger.py - class for train logging │ ├── visualization.py - class for tensorboardX visualization support │ └── ... │ ├── data/ - default directory for storing input data │ ├── experiments/ - default directory for storing configuration files │ ├── saved/ - default checkpoints folder │ └── runs/ - default logdir for tensorboardX
$ conda create --name <name> python=3.6
$ pip install -e .
$ conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
The code in this repo is an MNIST example of the template. You can run the tests, and the example project using:
$ pytest tests
$ project name train -c experiments/config.json
Config files are in .json format:
{
"name": "Mnist_LeNet", // training session name
"n_gpu": 1, // number of GPUs to use for training.
"arch": {
"type": "MnistModel", // name of model architecture to train
"args": {
}
},
"data_loader": {
"type": "MnistDataLoader", // selecting data loader
"args":{
"data_dir": "data/", // dataset path
"batch_size": 64, // batch size
"shuffle": true, // shuffle training data before splitting
"validation_split": 0.1 // validation data ratio
"num_workers": 2, // number of cpu processes to be used for data loading
}
},
"optimizer": {
"type": "Adam",
"args":{
"lr": 0.001, // learning rate
"weight_decay": 0, // (optional) weight decay
"amsgrad": true
}
},
"loss": "nll_loss", // loss
"metrics": [
"my_metric", "my_metric2" // list of metrics to evaluate
],
"lr_scheduler": {
"type": "StepLR", // learning rate scheduler
"args":{
"step_size": 50,
"gamma": 0.1
}
},
"trainer": {
"epochs": 100, // number of training epochs
"save_dir": "saved/", // checkpoints are saved in save_dir/name
"save_freq": 1, // save checkpoints every save_freq epochs
"verbosity": 2, // 0: quiet, 1: per epoch, 2: full
"monitor": "min val_loss" // mode and metric for model performance monitoring. set 'off' to disable.
"early_stop": 10 // number of epochs to wait before early stop. set 0 to disable.
"tensorboardX": true, // enable tensorboardX visualization support
"log_dir": "saved/runs" // directory to save log files for visualization
}
}
Add addional configurations if you need.
Modify the configurations in .json config files, then run:
python train.py --config experiments/config.json
You can resume from a previously saved checkpoint by:
python train.py --resume path/to/checkpoint
You can enable multi-GPU training by setting n_gpu argument of the config file to larger number. If configured to use smaller number of gpu than available, first n devices will be used by default. Specify indices of available GPUs by cuda environmental variable.
python train.py --device 2,3 -c experiments/config.json
This is equivalent to
CUDA_VISIBLE_DEVICES=2,3 python train.py -c config.py
BaseDataLoader is a subclass of torch.utils.data.DataLoader, you can use either of them.
BaseDataLoader handles: * Generating next batch * Data shuffling * Generating validation data loader by calling BaseDataLoader.split_validation()
BaseDataLoader is an iterator, to iterate through batches:
for batch_idx, (x_batch, y_batch) in data_loader:
pass
Please refer to data_loader/data_loaders.py for an MNIST data loading example.
BaseTrainer handles: 1. Training process logging 2. Checkpoint saving 3. Checkpoint resuming 4. Reconfigurable performance monitoring for saving current best model, and early stop training.
- If config monitor is set to max val_accuracy, which means then the trainer will save a
- checkpoint model_best.pth when validation accuracy of epoch replaces current maximum.
- If config early_stop is set, training will be automatically terminated when model
- performance does not improve for given number of epochs. This feature can be turned off by passing 0 to the early_stop option, or just deleting the line of config.
You need to implement _train_epoch() for your training process, if you need validation then you can implement _valid_epoch() as in trainer/trainer.py
Please refer to trainer/trainer.py for MNIST training.
- BaseModel handles:
- Inherited from torch.nn.Module
- __str__: Modify native print function to prints the number of trainable parameters.
Implement the foward pass method forward()
Please refer to model/model.py for a LeNet example.
Custom loss functions can be implemented in 'model/loss.py'. Use them by changing the name given in "loss" in config file, to corresponding name.
Metric functions are located in model/metric.py.
You can monitor multiple metrics by providing a list in the configuration file, eg.
"metrics": ["my_metric", "my_metric2"]
If you have additional information to be logged, in _train_epoch() of your trainer class, merge them with log as shown below before returning:
additional_log = {"gradient_norm": g, "sensitivity": s}
log = {**log, **additional_log}
return log
You can test trained model by running test.py passing path to the trained checkpoint by --resume argument.
To split validation data from a data loader, call BaseDataLoader.split_validation(), it will return a validation data loader, with the number of samples according to the specified ratio in your config file.
Note: the split_validation() method will modify the original data loader Note: split_validation() will return None if "validation_split" is set to 0
You can specify the name of the training session in config files:
"name": "MNIST_LeNet"
The checkpoints will be saved in save_dir/name/timestamp/checkpoint_epoch_n, with timestamp in mmdd_HHMMSS format.
A copy of config file will be saved in the same folder.
Note: checkpoints contain:
{
'arch': arch,
'epoch': epoch,
'logger': self.train_logger,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'monitor_best': self.mnt_best,
'config': self.config
}
This template supports https://github.com/lanpa/tensorboardX visualization. * TensorboardX Usage
Install
Follow installation guide in https://github.com/lanpa/tensorboardX
Run training
Set tensorboardX option in config file true.
Open tensorboard server
Type tensorboard --logdir saved/runs/ at the project root, then server will open at http://localhost:6006
By default, values of loss and metrics specified in config file, input images, and histogram of model parameters will be logged. If you need more visualizations, use add_scalar('tag', data), add_image('tag', image), etc in the trainer._train_epoch method. add_something() methods in this template are basically wrappers for those of tensorboardX.SummaryWriter module.
Note: You don't have to specify current steps, since WriterTensorboardX class defined at logger/visualization.py will track current steps.
This template is inspired by