Using Gradio API for Semantic Kernel - TextEmbeddingGeneration
Url: https://alexkhcheung-embeddingtest.hf.space/
import gradio as gr
from sentence_transformers import SentenceTransformer
import json
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
def embedding(input):
embeddings = model.encode(input)
yield json.dumps(embeddings.tolist())
with gr.Blocks() as iface:
with gr.Row():
inp = gr.Textbox(placeholder="Embedding Vector")
out = gr.Textbox()
btn = gr.Button("Run")
btn.click(fn=embedding, inputs=inp, outputs=out, api_name="embedding")
iface.queue().launch()
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.AI.Embeddings;
using Simple.SemanticKernel.Connectors.Gradio;
public class Program
{
public static async Task Main(string[] args)
{
var builder = new KernelBuilder();
builder.WithGradioEmbeddingGenerationService("https://alexkhcheung-embeddingtest.hf.space/", 0, setAsDefault: true);
var kernel = builder.Build();
var embeddingGeneration = kernel.GetService<ITextEmbeddingGeneration>();
var embedding = await embeddingGeneration.GenerateEmbeddingsAsync(new List<String>() { "Hello World !" });
Console.WriteLine(embedding[0]);
}
}