-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add data_exploration.py - create charts
- Loading branch information
1 parent
e6376ff
commit d81cb92
Showing
1 changed file
with
75 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
import seaborn as sns | ||
from preprocessing.preprocessing import DataPreprocessing | ||
import matplotlib.pyplot as plt | ||
|
||
preprocessing = DataPreprocessing("data/sbahn_hamburg.csv") | ||
df = preprocessing.create_df() | ||
df = preprocessing.rename_columns(df) | ||
df = preprocessing.change_datatypes(df) | ||
df = df.loc[df['sBahnID'] == 'S1'] | ||
|
||
df['Hour'] = df['Arrival'].dt.hour | ||
|
||
# Creating the scatter plot | ||
|
||
plt.figure(figsize=(10, 6)) | ||
sns.scatterplot(x='Boardings', y='Alightings', data=df) | ||
plt.title('Scatter Plot of Boardings vs. Alightings') | ||
plt.xlabel('Boarding Counts') | ||
plt.ylabel('Alighting Counts') | ||
plt.show() | ||
|
||
|
||
# Preparing the data for heat map | ||
# Aggregating data by station and hour | ||
df_heat_map_agg = df.groupby(['Station', 'Hour']).agg({'Boardings': 'sum', 'Alightings': 'sum'}).reset_index() | ||
|
||
# Pivoting the DataFrame for seaborn heatmap | ||
heatmap_data = df_heat_map_agg.pivot("Station", "Hour", "Boardings") # Example for Boardings | ||
|
||
# Creating the heat map | ||
plt.figure(figsize=(15, 8)) | ||
sns.heatmap(heatmap_data, #annot=True, #fmt="d", | ||
cmap="YlGnBu") | ||
plt.title('Heat Map of Boarding Counts by Station and Hour') | ||
plt.xlabel('Hour of the Day') | ||
plt.ylabel('Station') | ||
plt.show() | ||
|
||
|
||
# Aggregating data by station | ||
df_station_aggregated = df.groupby('Station').sum().reset_index() | ||
|
||
# Melting the DataFrame for seaborn barplot | ||
df_station_melted = df_station_aggregated.melt('Station', var_name='Type', value_name='Counts') | ||
|
||
# Creating the bar chart | ||
plt.figure(figsize=(10, 6)) | ||
sns.barplot(x='Station', y='Counts', hue='Type', data=df_station_melted) | ||
plt.title('Station-wise Boarding and Alighting Counts') | ||
plt.xlabel('Station') | ||
plt.xticks(rotation=45) | ||
plt.ylabel('Total Counts') | ||
plt.show() | ||
|
||
|
||
# Plotting histograms | ||
|
||
df = df.loc[df['sBahnID'] == 'S1'] | ||
|
||
plt.figure(figsize=(12, 6)) | ||
|
||
plt.subplot(1, 2, 1) | ||
sns.histplot(df['Boardings'], kde=False, color='blue') | ||
plt.title('Histogram of Boardings') | ||
plt.xlabel('Number of Boardings') | ||
plt.ylabel('Frequency') | ||
|
||
plt.subplot(1, 2, 2) | ||
sns.histplot(df['Alightings'], kde=False, color='green') | ||
plt.title('Histogram of Alightings') | ||
plt.xlabel('Number of Alightings') | ||
plt.ylabel('Frequency') | ||
|
||
plt.tight_layout() | ||
plt.show() |