-
Notifications
You must be signed in to change notification settings - Fork 149
bpf: BTF support for ksyms #1
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
ksym so that further dereferences on the ksym can use the BTF info to validate accesses. Internally, when seeing a pseudo_btf_id ld insn, the verifier reads the btf_id stored in the insn[0]'s imm field and marks the dst_reg as PTR_TO_BTF_ID. The btf_id points to a VAR_KIND, which is encoded in btf_vminux by pahole. If the VAR is not of a struct type, the dst reg will be marked as PTR_TO_MEM instead of PTR_TO_BTF_ID and the mem_size is resolved to the size of the VAR's type. From the VAR btf_id, the verifier can also read the address of the ksym's corresponding kernel var from kallsyms and use that to fill dst_reg. Therefore, the proper functionality of pseudo_btf_id depends on (1) kallsyms and (2) the encoding of kernel global VARs in pahole, which should be available since pahole v1.18. Signed-off-by: Hao Luo <haoluo@google.com> --- include/linux/bpf_verifier.h | 4 ++ include/linux/btf.h | 15 +++++ include/uapi/linux/bpf.h | 38 ++++++++--- kernel/bpf/btf.c | 15 ----- kernel/bpf/verifier.c | 112 ++++++++++++++++++++++++++++++--- tools/include/uapi/linux/bpf.h | 38 ++++++++--- 6 files changed, 182 insertions(+), 40 deletions(-)
information from kernel btf. If a valid btf entry for the ksym is found, libbpf can pass in the found btf id to the verifier, which validates the ksym's type and value. Typeless ksyms (i.e. those defined as 'void') will not have such btf_id, but it has the symbol's address (read from kallsyms) and its value is treated as a raw pointer. Signed-off-by: Hao Luo <haoluo@google.com> --- tools/lib/bpf/libbpf.c | 116 ++++++++++++++++++++++++++++++++++++----- 1 file changed, 102 insertions(+), 14 deletions(-)
the other is a plain int. This tests two paths in the kernel. Struct ksyms will be converted into PTR_TO_BTF_ID by the verifier while int typed ksyms will be converted into PTR_TO_MEM. Signed-off-by: Hao Luo <haoluo@google.com> --- .../testing/selftests/bpf/prog_tests/ksyms.c | 31 +++------ .../selftests/bpf/prog_tests/ksyms_btf.c | 63 +++++++++++++++++++ .../selftests/bpf/progs/test_ksyms_btf.c | 23 +++++++ tools/testing/selftests/bpf/trace_helpers.c | 26 ++++++++ tools/testing/selftests/bpf/trace_helpers.h | 4 ++ 5 files changed, 123 insertions(+), 24 deletions(-) create mode 100644 tools/testing/selftests/bpf/prog_tests/ksyms_btf.c create mode 100644 tools/testing/selftests/bpf/progs/test_ksyms_btf.c
bpf_per_cpu_ptr() has the same semantic as per_cpu_ptr() in the kernel except that it may return NULL. This happens when the cpu parameter is out of range. So the caller must check the returned value. Acked-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Hao Luo <haoluo@google.com> --- include/linux/bpf.h | 3 ++ include/linux/btf.h | 11 ++++++ include/uapi/linux/bpf.h | 17 +++++++++ kernel/bpf/btf.c | 10 ------ kernel/bpf/verifier.c | 66 +++++++++++++++++++++++++++++++--- kernel/trace/bpf_trace.c | 18 ++++++++++ tools/include/uapi/linux/bpf.h | 17 +++++++++ 7 files changed, 128 insertions(+), 14 deletions(-)
helper always returns a valid pointer, therefore no need to check returned value for NULL. Also note that all programs run with preemption disabled, which means that the returned pointer is stable during all the execution of the program. Signed-off-by: Hao Luo <haoluo@google.com> --- include/linux/bpf.h | 1 + include/uapi/linux/bpf.h | 14 ++++++++++++++ kernel/bpf/verifier.c | 10 +++++++--- kernel/trace/bpf_trace.c | 14 ++++++++++++++ tools/include/uapi/linux/bpf.h | 14 ++++++++++++++ 5 files changed, 50 insertions(+), 3 deletions(-)
kernel. If the base pointer points to a struct, the returned reg is of type PTR_TO_BTF_ID. Direct pointer dereference can be applied on the returned variable. If the base pointer isn't a struct, the returned reg is of type PTR_TO_MEM, which also supports direct pointer dereference. Acked-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Hao Luo <haoluo@google.com> --- .../selftests/bpf/prog_tests/ksyms_btf.c | 10 +++++++ .../selftests/bpf/progs/test_ksyms_btf.c | 26 +++++++++++++++++++ 2 files changed, 36 insertions(+)
Master branch: 95cec14 patch https://patchwork.ozlabs.org/project/netdev/patch/20200903223332.881541-2-haoluo@google.com/ applied successfully |
At least one diff in series https://patchwork.ozlabs.org/project/netdev/list/?series=199405 expired. Closing PR. |
[ 6525.735488] Unexpected kernel BRK exception at EL1 [ 6525.735502] Internal error: ptrace BRK handler: f2000100 [#1] SMP [ 6525.741609] Modules linked in: nls_utf8 cifs libdes libarc4 dns_resolver fscache binfmt_misc nls_ascii nls_cp437 vfat fat aes_ce_blk crypto_simd cryptd aes_ce_cipher ghash_ce gf128mul efi_pstore sha2_ce sha256_arm64 sha1_ce evdev efivars efivarfs ip_tables x_tables autofs4 btrfs blake2b_generic xor xor_neon zstd_compress raid6_pq libcrc32c crc32c_generic ahci xhci_pci libahci xhci_hcd igb libata i2c_algo_bit nvme realtek usbcore nvme_core scsi_mod t10_pi netsec mdio_devres of_mdio gpio_keys fixed_phy libphy gpio_mb86s7x [ 6525.787760] CPU: 3 PID: 7881 Comm: test_verifier Tainted: G W 5.9.0-rc1+ #47 [ 6525.796111] Hardware name: Socionext SynQuacer E-series DeveloperBox, BIOS build #1 Jun 6 2020 [ 6525.804812] pstate: 20000005 (nzCv daif -PAN -UAO BTYPE=--) [ 6525.810390] pc : bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.815613] lr : bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.820832] sp : ffff8000130cbb80 [ 6525.824141] x29: ffff8000130cbbb0 x28: 0000000000000000 [ 6525.829451] x27: 000005ef6fcbf39b x26: 0000000000000000 [ 6525.834759] x25: ffff8000130cbb80 x24: ffff800011dc7038 [ 6525.840067] x23: ffff8000130cbd00 x22: ffff0008f624d080 [ 6525.845375] x21: 0000000000000001 x20: ffff800011dc7000 [ 6525.850682] x19: 0000000000000000 x18: 0000000000000000 [ 6525.855990] x17: 0000000000000000 x16: 0000000000000000 [ 6525.861298] x15: 0000000000000000 x14: 0000000000000000 [ 6525.866606] x13: 0000000000000000 x12: 0000000000000000 [ 6525.871913] x11: 0000000000000001 x10: ffff8000000a660c [ 6525.877220] x9 : ffff800010951810 x8 : ffff8000130cbc38 [ 6525.882528] x7 : 0000000000000000 x6 : 0000009864cfa881 [ 6525.887836] x5 : 00ffffffffffffff x4 : 002880ba1a0b3e9f [ 6525.893144] x3 : 0000000000000018 x2 : ffff8000000a4374 [ 6525.898452] x1 : 000000000000000a x0 : 0000000000000009 [ 6525.903760] Call trace: [ 6525.906202] bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.911076] bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.915957] bpf_dispatcher_xdp_func+0x14/0x20 [ 6525.920398] bpf_test_run+0x70/0x1b0 [ 6525.923969] bpf_prog_test_run_xdp+0xec/0x190 [ 6525.928326] __do_sys_bpf+0xc88/0x1b28 [ 6525.932072] __arm64_sys_bpf+0x24/0x30 [ 6525.935820] el0_svc_common.constprop.0+0x70/0x168 [ 6525.940607] do_el0_svc+0x28/0x88 [ 6525.943920] el0_sync_handler+0x88/0x190 [ 6525.947838] el0_sync+0x140/0x180 [ 6525.951154] Code: d4202000 d4202000 d4202000 d4202000 (d4202000) [ 6525.957249] ---[ end trace cecc3f93b14927e2 ]--- The reason is the offset[] creation and later usage while building the eBPF body. The code currently omits the first instruction, since build_insn() will increase our ctx->idx before saving it. That was fine up until bounded eBPF loops were introduced. After that introduction, offset[0] must be the offset of the end of prologue which is the start of the 1st insn while, offset[n] holds the offset of the end of n-th insn. When "taken loop with back jump to 1st insn" test runs, it will eventually call bpf2a64_offset(-1, 2, ctx). Since negative indexing is permitted, the current outcome depends on the value stored in ctx->offset[-1], which has nothing to do with our array. If the value happens to be 0 the tests will work. If not this error triggers. 7c2e988 ("bpf: fix x64 JIT code generation for jmp to 1st insn") fixed an indentical bug on x86 when eBPF bounded loops were introduced. So let's fix it by creating the ctx->offset[] correctly in the first place and account for the first instruction while calculating the arm instruction offsets. Fixes: 2589726 ("bpf: introduce bounded loops") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reported-by: Jiri Olsa <jolsa@kernel.org> Co-developed-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Co-developed-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> --- Changes since v1: - Added Co-developed-by, Reported-by and Fixes tags correctly - Describe the expected context of ctx->offset[] in comments arch/arm64/net/bpf_jit_comp.c | 28 ++++++++++++++++++++-------- 1 file changed, 20 insertions(+), 8 deletions(-)
[ 6525.735488] Unexpected kernel BRK exception at EL1 [ 6525.735502] Internal error: ptrace BRK handler: f2000100 [#1] SMP [ 6525.741609] Modules linked in: nls_utf8 cifs libdes libarc4 dns_resolver fscache binfmt_misc nls_ascii nls_cp437 vfat fat aes_ce_blk crypto_simd cryptd aes_ce_cipher ghash_ce gf128mul efi_pstore sha2_ce sha256_arm64 sha1_ce evdev efivars efivarfs ip_tables x_tables autofs4 btrfs blake2b_generic xor xor_neon zstd_compress raid6_pq libcrc32c crc32c_generic ahci xhci_pci libahci xhci_hcd igb libata i2c_algo_bit nvme realtek usbcore nvme_core scsi_mod t10_pi netsec mdio_devres of_mdio gpio_keys fixed_phy libphy gpio_mb86s7x [ 6525.787760] CPU: 3 PID: 7881 Comm: test_verifier Tainted: G W 5.9.0-rc1+ #47 [ 6525.796111] Hardware name: Socionext SynQuacer E-series DeveloperBox, BIOS build #1 Jun 6 2020 [ 6525.804812] pstate: 20000005 (nzCv daif -PAN -UAO BTYPE=--) [ 6525.810390] pc : bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.815613] lr : bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.820832] sp : ffff8000130cbb80 [ 6525.824141] x29: ffff8000130cbbb0 x28: 0000000000000000 [ 6525.829451] x27: 000005ef6fcbf39b x26: 0000000000000000 [ 6525.834759] x25: ffff8000130cbb80 x24: ffff800011dc7038 [ 6525.840067] x23: ffff8000130cbd00 x22: ffff0008f624d080 [ 6525.845375] x21: 0000000000000001 x20: ffff800011dc7000 [ 6525.850682] x19: 0000000000000000 x18: 0000000000000000 [ 6525.855990] x17: 0000000000000000 x16: 0000000000000000 [ 6525.861298] x15: 0000000000000000 x14: 0000000000000000 [ 6525.866606] x13: 0000000000000000 x12: 0000000000000000 [ 6525.871913] x11: 0000000000000001 x10: ffff8000000a660c [ 6525.877220] x9 : ffff800010951810 x8 : ffff8000130cbc38 [ 6525.882528] x7 : 0000000000000000 x6 : 0000009864cfa881 [ 6525.887836] x5 : 00ffffffffffffff x4 : 002880ba1a0b3e9f [ 6525.893144] x3 : 0000000000000018 x2 : ffff8000000a4374 [ 6525.898452] x1 : 000000000000000a x0 : 0000000000000009 [ 6525.903760] Call trace: [ 6525.906202] bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.911076] bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.915957] bpf_dispatcher_xdp_func+0x14/0x20 [ 6525.920398] bpf_test_run+0x70/0x1b0 [ 6525.923969] bpf_prog_test_run_xdp+0xec/0x190 [ 6525.928326] __do_sys_bpf+0xc88/0x1b28 [ 6525.932072] __arm64_sys_bpf+0x24/0x30 [ 6525.935820] el0_svc_common.constprop.0+0x70/0x168 [ 6525.940607] do_el0_svc+0x28/0x88 [ 6525.943920] el0_sync_handler+0x88/0x190 [ 6525.947838] el0_sync+0x140/0x180 [ 6525.951154] Code: d4202000 d4202000 d4202000 d4202000 (d4202000) [ 6525.957249] ---[ end trace cecc3f93b14927e2 ]--- The reason is the offset[] creation and later usage while building the eBPF body. The code currently omits the first instruction, since build_insn() will increase our ctx->idx before saving it. That was fine up until bounded eBPF loops were introduced. After that introduction, offset[0] must be the offset of the end of prologue which is the start of the 1st insn while, offset[n] holds the offset of the end of n-th insn. When "taken loop with back jump to 1st insn" test runs, it will eventually call bpf2a64_offset(-1, 2, ctx). Since negative indexing is permitted, the current outcome depends on the value stored in ctx->offset[-1], which has nothing to do with our array. If the value happens to be 0 the tests will work. If not this error triggers. 7c2e988 ("bpf: fix x64 JIT code generation for jmp to 1st insn") fixed an indentical bug on x86 when eBPF bounded loops were introduced. So let's fix it by creating the ctx->offset[] correctly in the first place and account for the first instruction while calculating the arm instruction offsets. Fixes: 2589726 ("bpf: introduce bounded loops") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reported-by: Jiri Olsa <jolsa@kernel.org> Co-developed-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Co-developed-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> --- Changes since v1: - Added Co-developed-by, Reported-by and Fixes tags correctly - Describe the expected context of ctx->offset[] in comments arch/arm64/net/bpf_jit_comp.c | 28 ++++++++++++++++++++-------- 1 file changed, 20 insertions(+), 8 deletions(-)
[ 6525.735488] Unexpected kernel BRK exception at EL1 [ 6525.735502] Internal error: ptrace BRK handler: f2000100 [#1] SMP [ 6525.741609] Modules linked in: nls_utf8 cifs libdes libarc4 dns_resolver fscache binfmt_misc nls_ascii nls_cp437 vfat fat aes_ce_blk crypto_simd cryptd aes_ce_cipher ghash_ce gf128mul efi_pstore sha2_ce sha256_arm64 sha1_ce evdev efivars efivarfs ip_tables x_tables autofs4 btrfs blake2b_generic xor xor_neon zstd_compress raid6_pq libcrc32c crc32c_generic ahci xhci_pci libahci xhci_hcd igb libata i2c_algo_bit nvme realtek usbcore nvme_core scsi_mod t10_pi netsec mdio_devres of_mdio gpio_keys fixed_phy libphy gpio_mb86s7x [ 6525.787760] CPU: 3 PID: 7881 Comm: test_verifier Tainted: G W 5.9.0-rc1+ #47 [ 6525.796111] Hardware name: Socionext SynQuacer E-series DeveloperBox, BIOS build #1 Jun 6 2020 [ 6525.804812] pstate: 20000005 (nzCv daif -PAN -UAO BTYPE=--) [ 6525.810390] pc : bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.815613] lr : bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.820832] sp : ffff8000130cbb80 [ 6525.824141] x29: ffff8000130cbbb0 x28: 0000000000000000 [ 6525.829451] x27: 000005ef6fcbf39b x26: 0000000000000000 [ 6525.834759] x25: ffff8000130cbb80 x24: ffff800011dc7038 [ 6525.840067] x23: ffff8000130cbd00 x22: ffff0008f624d080 [ 6525.845375] x21: 0000000000000001 x20: ffff800011dc7000 [ 6525.850682] x19: 0000000000000000 x18: 0000000000000000 [ 6525.855990] x17: 0000000000000000 x16: 0000000000000000 [ 6525.861298] x15: 0000000000000000 x14: 0000000000000000 [ 6525.866606] x13: 0000000000000000 x12: 0000000000000000 [ 6525.871913] x11: 0000000000000001 x10: ffff8000000a660c [ 6525.877220] x9 : ffff800010951810 x8 : ffff8000130cbc38 [ 6525.882528] x7 : 0000000000000000 x6 : 0000009864cfa881 [ 6525.887836] x5 : 00ffffffffffffff x4 : 002880ba1a0b3e9f [ 6525.893144] x3 : 0000000000000018 x2 : ffff8000000a4374 [ 6525.898452] x1 : 000000000000000a x0 : 0000000000000009 [ 6525.903760] Call trace: [ 6525.906202] bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.911076] bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.915957] bpf_dispatcher_xdp_func+0x14/0x20 [ 6525.920398] bpf_test_run+0x70/0x1b0 [ 6525.923969] bpf_prog_test_run_xdp+0xec/0x190 [ 6525.928326] __do_sys_bpf+0xc88/0x1b28 [ 6525.932072] __arm64_sys_bpf+0x24/0x30 [ 6525.935820] el0_svc_common.constprop.0+0x70/0x168 [ 6525.940607] do_el0_svc+0x28/0x88 [ 6525.943920] el0_sync_handler+0x88/0x190 [ 6525.947838] el0_sync+0x140/0x180 [ 6525.951154] Code: d4202000 d4202000 d4202000 d4202000 (d4202000) [ 6525.957249] ---[ end trace cecc3f93b14927e2 ]--- The reason is the offset[] creation and later usage while building the eBPF body. The code currently omits the first instruction, since build_insn() will increase our ctx->idx before saving it. That was fine up until bounded eBPF loops were introduced. After that introduction, offset[0] must be the offset of the end of prologue which is the start of the 1st insn while, offset[n] holds the offset of the end of n-th insn. When "taken loop with back jump to 1st insn" test runs, it will eventually call bpf2a64_offset(-1, 2, ctx). Since negative indexing is permitted, the current outcome depends on the value stored in ctx->offset[-1], which has nothing to do with our array. If the value happens to be 0 the tests will work. If not this error triggers. 7c2e988 ("bpf: fix x64 JIT code generation for jmp to 1st insn") fixed an indentical bug on x86 when eBPF bounded loops were introduced. So let's fix it by creating the ctx->offset[] correctly in the first place and account for the first instruction while calculating the arm instruction offsets. Fixes: 2589726 ("bpf: introduce bounded loops") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reported-by: Jiri Olsa <jolsa@kernel.org> Co-developed-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Co-developed-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> --- Changes since v1: - Added Co-developed-by, Reported-by and Fixes tags correctly - Describe the expected context of ctx->offset[] in comments arch/arm64/net/bpf_jit_comp.c | 28 ++++++++++++++++++++-------- 1 file changed, 20 insertions(+), 8 deletions(-)
[ 6525.735488] Unexpected kernel BRK exception at EL1 [ 6525.735502] Internal error: ptrace BRK handler: f2000100 [#1] SMP [ 6525.741609] Modules linked in: nls_utf8 cifs libdes libarc4 dns_resolver fscache binfmt_misc nls_ascii nls_cp437 vfat fat aes_ce_blk crypto_simd cryptd aes_ce_cipher ghash_ce gf128mul efi_pstore sha2_ce sha256_arm64 sha1_ce evdev efivars efivarfs ip_tables x_tables autofs4 btrfs blake2b_generic xor xor_neon zstd_compress raid6_pq libcrc32c crc32c_generic ahci xhci_pci libahci xhci_hcd igb libata i2c_algo_bit nvme realtek usbcore nvme_core scsi_mod t10_pi netsec mdio_devres of_mdio gpio_keys fixed_phy libphy gpio_mb86s7x [ 6525.787760] CPU: 3 PID: 7881 Comm: test_verifier Tainted: G W 5.9.0-rc1+ #47 [ 6525.796111] Hardware name: Socionext SynQuacer E-series DeveloperBox, BIOS build #1 Jun 6 2020 [ 6525.804812] pstate: 20000005 (nzCv daif -PAN -UAO BTYPE=--) [ 6525.810390] pc : bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.815613] lr : bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.820832] sp : ffff8000130cbb80 [ 6525.824141] x29: ffff8000130cbbb0 x28: 0000000000000000 [ 6525.829451] x27: 000005ef6fcbf39b x26: 0000000000000000 [ 6525.834759] x25: ffff8000130cbb80 x24: ffff800011dc7038 [ 6525.840067] x23: ffff8000130cbd00 x22: ffff0008f624d080 [ 6525.845375] x21: 0000000000000001 x20: ffff800011dc7000 [ 6525.850682] x19: 0000000000000000 x18: 0000000000000000 [ 6525.855990] x17: 0000000000000000 x16: 0000000000000000 [ 6525.861298] x15: 0000000000000000 x14: 0000000000000000 [ 6525.866606] x13: 0000000000000000 x12: 0000000000000000 [ 6525.871913] x11: 0000000000000001 x10: ffff8000000a660c [ 6525.877220] x9 : ffff800010951810 x8 : ffff8000130cbc38 [ 6525.882528] x7 : 0000000000000000 x6 : 0000009864cfa881 [ 6525.887836] x5 : 00ffffffffffffff x4 : 002880ba1a0b3e9f [ 6525.893144] x3 : 0000000000000018 x2 : ffff8000000a4374 [ 6525.898452] x1 : 000000000000000a x0 : 0000000000000009 [ 6525.903760] Call trace: [ 6525.906202] bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.911076] bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.915957] bpf_dispatcher_xdp_func+0x14/0x20 [ 6525.920398] bpf_test_run+0x70/0x1b0 [ 6525.923969] bpf_prog_test_run_xdp+0xec/0x190 [ 6525.928326] __do_sys_bpf+0xc88/0x1b28 [ 6525.932072] __arm64_sys_bpf+0x24/0x30 [ 6525.935820] el0_svc_common.constprop.0+0x70/0x168 [ 6525.940607] do_el0_svc+0x28/0x88 [ 6525.943920] el0_sync_handler+0x88/0x190 [ 6525.947838] el0_sync+0x140/0x180 [ 6525.951154] Code: d4202000 d4202000 d4202000 d4202000 (d4202000) [ 6525.957249] ---[ end trace cecc3f93b14927e2 ]--- The reason is the offset[] creation and later usage while building the eBPF body. The code currently omits the first instruction, since build_insn() will increase our ctx->idx before saving it. That was fine up until bounded eBPF loops were introduced. After that introduction, offset[0] must be the offset of the end of prologue which is the start of the 1st insn while, offset[n] holds the offset of the end of n-th insn. When "taken loop with back jump to 1st insn" test runs, it will eventually call bpf2a64_offset(-1, 2, ctx). Since negative indexing is permitted, the current outcome depends on the value stored in ctx->offset[-1], which has nothing to do with our array. If the value happens to be 0 the tests will work. If not this error triggers. 7c2e988 ("bpf: fix x64 JIT code generation for jmp to 1st insn") fixed an indentical bug on x86 when eBPF bounded loops were introduced. So let's fix it by creating the ctx->offset[] correctly in the first place and account for the first instruction while calculating the arm instruction offsets. Fixes: 2589726 ("bpf: introduce bounded loops") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reported-by: Jiri Olsa <jolsa@kernel.org> Co-developed-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Co-developed-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> --- Changes since v1: - Added Co-developed-by, Reported-by and Fixes tags correctly - Describe the expected context of ctx->offset[] in comments arch/arm64/net/bpf_jit_comp.c | 28 ++++++++++++++++++++-------- 1 file changed, 20 insertions(+), 8 deletions(-)
[ 6525.735488] Unexpected kernel BRK exception at EL1 [ 6525.735502] Internal error: ptrace BRK handler: f2000100 [#1] SMP [ 6525.741609] Modules linked in: nls_utf8 cifs libdes libarc4 dns_resolver fscache binfmt_misc nls_ascii nls_cp437 vfat fat aes_ce_blk crypto_simd cryptd aes_ce_cipher ghash_ce gf128mul efi_pstore sha2_ce sha256_arm64 sha1_ce evdev efivars efivarfs ip_tables x_tables autofs4 btrfs blake2b_generic xor xor_neon zstd_compress raid6_pq libcrc32c crc32c_generic ahci xhci_pci libahci xhci_hcd igb libata i2c_algo_bit nvme realtek usbcore nvme_core scsi_mod t10_pi netsec mdio_devres of_mdio gpio_keys fixed_phy libphy gpio_mb86s7x [ 6525.787760] CPU: 3 PID: 7881 Comm: test_verifier Tainted: G W 5.9.0-rc1+ #47 [ 6525.796111] Hardware name: Socionext SynQuacer E-series DeveloperBox, BIOS build #1 Jun 6 2020 [ 6525.804812] pstate: 20000005 (nzCv daif -PAN -UAO BTYPE=--) [ 6525.810390] pc : bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.815613] lr : bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.820832] sp : ffff8000130cbb80 [ 6525.824141] x29: ffff8000130cbbb0 x28: 0000000000000000 [ 6525.829451] x27: 000005ef6fcbf39b x26: 0000000000000000 [ 6525.834759] x25: ffff8000130cbb80 x24: ffff800011dc7038 [ 6525.840067] x23: ffff8000130cbd00 x22: ffff0008f624d080 [ 6525.845375] x21: 0000000000000001 x20: ffff800011dc7000 [ 6525.850682] x19: 0000000000000000 x18: 0000000000000000 [ 6525.855990] x17: 0000000000000000 x16: 0000000000000000 [ 6525.861298] x15: 0000000000000000 x14: 0000000000000000 [ 6525.866606] x13: 0000000000000000 x12: 0000000000000000 [ 6525.871913] x11: 0000000000000001 x10: ffff8000000a660c [ 6525.877220] x9 : ffff800010951810 x8 : ffff8000130cbc38 [ 6525.882528] x7 : 0000000000000000 x6 : 0000009864cfa881 [ 6525.887836] x5 : 00ffffffffffffff x4 : 002880ba1a0b3e9f [ 6525.893144] x3 : 0000000000000018 x2 : ffff8000000a4374 [ 6525.898452] x1 : 000000000000000a x0 : 0000000000000009 [ 6525.903760] Call trace: [ 6525.906202] bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.911076] bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.915957] bpf_dispatcher_xdp_func+0x14/0x20 [ 6525.920398] bpf_test_run+0x70/0x1b0 [ 6525.923969] bpf_prog_test_run_xdp+0xec/0x190 [ 6525.928326] __do_sys_bpf+0xc88/0x1b28 [ 6525.932072] __arm64_sys_bpf+0x24/0x30 [ 6525.935820] el0_svc_common.constprop.0+0x70/0x168 [ 6525.940607] do_el0_svc+0x28/0x88 [ 6525.943920] el0_sync_handler+0x88/0x190 [ 6525.947838] el0_sync+0x140/0x180 [ 6525.951154] Code: d4202000 d4202000 d4202000 d4202000 (d4202000) [ 6525.957249] ---[ end trace cecc3f93b14927e2 ]--- The reason is the offset[] creation and later usage while building the eBPF body. The code currently omits the first instruction, since build_insn() will increase our ctx->idx before saving it. That was fine up until bounded eBPF loops were introduced. After that introduction, offset[0] must be the offset of the end of prologue which is the start of the 1st insn while, offset[n] holds the offset of the end of n-th insn. When "taken loop with back jump to 1st insn" test runs, it will eventually call bpf2a64_offset(-1, 2, ctx). Since negative indexing is permitted, the current outcome depends on the value stored in ctx->offset[-1], which has nothing to do with our array. If the value happens to be 0 the tests will work. If not this error triggers. 7c2e988 ("bpf: fix x64 JIT code generation for jmp to 1st insn") fixed an indentical bug on x86 when eBPF bounded loops were introduced. So let's fix it by creating the ctx->offset[] correctly in the first place and account for the first instruction while calculating the arm instruction offsets. Fixes: 2589726 ("bpf: introduce bounded loops") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reported-by: Jiri Olsa <jolsa@kernel.org> Co-developed-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Co-developed-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> --- Changes since v1: - Added Co-developed-by, Reported-by and Fixes tags correctly - Describe the expected context of ctx->offset[] in comments arch/arm64/net/bpf_jit_comp.c | 28 ++++++++++++++++++++-------- 1 file changed, 20 insertions(+), 8 deletions(-)
[ 6525.735488] Unexpected kernel BRK exception at EL1 [ 6525.735502] Internal error: ptrace BRK handler: f2000100 [#1] SMP [ 6525.741609] Modules linked in: nls_utf8 cifs libdes libarc4 dns_resolver fscache binfmt_misc nls_ascii nls_cp437 vfat fat aes_ce_blk crypto_simd cryptd aes_ce_cipher ghash_ce gf128mul efi_pstore sha2_ce sha256_arm64 sha1_ce evdev efivars efivarfs ip_tables x_tables autofs4 btrfs blake2b_generic xor xor_neon zstd_compress raid6_pq libcrc32c crc32c_generic ahci xhci_pci libahci xhci_hcd igb libata i2c_algo_bit nvme realtek usbcore nvme_core scsi_mod t10_pi netsec mdio_devres of_mdio gpio_keys fixed_phy libphy gpio_mb86s7x [ 6525.787760] CPU: 3 PID: 7881 Comm: test_verifier Tainted: G W 5.9.0-rc1+ #47 [ 6525.796111] Hardware name: Socionext SynQuacer E-series DeveloperBox, BIOS build #1 Jun 6 2020 [ 6525.804812] pstate: 20000005 (nzCv daif -PAN -UAO BTYPE=--) [ 6525.810390] pc : bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.815613] lr : bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.820832] sp : ffff8000130cbb80 [ 6525.824141] x29: ffff8000130cbbb0 x28: 0000000000000000 [ 6525.829451] x27: 000005ef6fcbf39b x26: 0000000000000000 [ 6525.834759] x25: ffff8000130cbb80 x24: ffff800011dc7038 [ 6525.840067] x23: ffff8000130cbd00 x22: ffff0008f624d080 [ 6525.845375] x21: 0000000000000001 x20: ffff800011dc7000 [ 6525.850682] x19: 0000000000000000 x18: 0000000000000000 [ 6525.855990] x17: 0000000000000000 x16: 0000000000000000 [ 6525.861298] x15: 0000000000000000 x14: 0000000000000000 [ 6525.866606] x13: 0000000000000000 x12: 0000000000000000 [ 6525.871913] x11: 0000000000000001 x10: ffff8000000a660c [ 6525.877220] x9 : ffff800010951810 x8 : ffff8000130cbc38 [ 6525.882528] x7 : 0000000000000000 x6 : 0000009864cfa881 [ 6525.887836] x5 : 00ffffffffffffff x4 : 002880ba1a0b3e9f [ 6525.893144] x3 : 0000000000000018 x2 : ffff8000000a4374 [ 6525.898452] x1 : 000000000000000a x0 : 0000000000000009 [ 6525.903760] Call trace: [ 6525.906202] bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.911076] bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.915957] bpf_dispatcher_xdp_func+0x14/0x20 [ 6525.920398] bpf_test_run+0x70/0x1b0 [ 6525.923969] bpf_prog_test_run_xdp+0xec/0x190 [ 6525.928326] __do_sys_bpf+0xc88/0x1b28 [ 6525.932072] __arm64_sys_bpf+0x24/0x30 [ 6525.935820] el0_svc_common.constprop.0+0x70/0x168 [ 6525.940607] do_el0_svc+0x28/0x88 [ 6525.943920] el0_sync_handler+0x88/0x190 [ 6525.947838] el0_sync+0x140/0x180 [ 6525.951154] Code: d4202000 d4202000 d4202000 d4202000 (d4202000) [ 6525.957249] ---[ end trace cecc3f93b14927e2 ]--- The reason is the offset[] creation and later usage while building the eBPF body. The code currently omits the first instruction, since build_insn() will increase our ctx->idx before saving it. That was fine up until bounded eBPF loops were introduced. After that introduction, offset[0] must be the offset of the end of prologue which is the start of the 1st insn while, offset[n] holds the offset of the end of n-th insn. When "taken loop with back jump to 1st insn" test runs, it will eventually call bpf2a64_offset(-1, 2, ctx). Since negative indexing is permitted, the current outcome depends on the value stored in ctx->offset[-1], which has nothing to do with our array. If the value happens to be 0 the tests will work. If not this error triggers. 7c2e988 ("bpf: fix x64 JIT code generation for jmp to 1st insn") fixed an indentical bug on x86 when eBPF bounded loops were introduced. So let's fix it by creating the ctx->offset[] correctly in the first place and account for the first instruction while calculating the arm instruction offsets. Fixes: 2589726 ("bpf: introduce bounded loops") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reported-by: Jiri Olsa <jolsa@kernel.org> Co-developed-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Co-developed-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> --- Changes since v1: - Added Co-developed-by, Reported-by and Fixes tags correctly - Describe the expected context of ctx->offset[] in comments arch/arm64/net/bpf_jit_comp.c | 28 ++++++++++++++++++++-------- 1 file changed, 20 insertions(+), 8 deletions(-)
[ 6525.735488] Unexpected kernel BRK exception at EL1 [ 6525.735502] Internal error: ptrace BRK handler: f2000100 [#1] SMP [ 6525.741609] Modules linked in: nls_utf8 cifs libdes libarc4 dns_resolver fscache binfmt_misc nls_ascii nls_cp437 vfat fat aes_ce_blk crypto_simd cryptd aes_ce_cipher ghash_ce gf128mul efi_pstore sha2_ce sha256_arm64 sha1_ce evdev efivars efivarfs ip_tables x_tables autofs4 btrfs blake2b_generic xor xor_neon zstd_compress raid6_pq libcrc32c crc32c_generic ahci xhci_pci libahci xhci_hcd igb libata i2c_algo_bit nvme realtek usbcore nvme_core scsi_mod t10_pi netsec mdio_devres of_mdio gpio_keys fixed_phy libphy gpio_mb86s7x [ 6525.787760] CPU: 3 PID: 7881 Comm: test_verifier Tainted: G W 5.9.0-rc1+ #47 [ 6525.796111] Hardware name: Socionext SynQuacer E-series DeveloperBox, BIOS build #1 Jun 6 2020 [ 6525.804812] pstate: 20000005 (nzCv daif -PAN -UAO BTYPE=--) [ 6525.810390] pc : bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.815613] lr : bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.820832] sp : ffff8000130cbb80 [ 6525.824141] x29: ffff8000130cbbb0 x28: 0000000000000000 [ 6525.829451] x27: 000005ef6fcbf39b x26: 0000000000000000 [ 6525.834759] x25: ffff8000130cbb80 x24: ffff800011dc7038 [ 6525.840067] x23: ffff8000130cbd00 x22: ffff0008f624d080 [ 6525.845375] x21: 0000000000000001 x20: ffff800011dc7000 [ 6525.850682] x19: 0000000000000000 x18: 0000000000000000 [ 6525.855990] x17: 0000000000000000 x16: 0000000000000000 [ 6525.861298] x15: 0000000000000000 x14: 0000000000000000 [ 6525.866606] x13: 0000000000000000 x12: 0000000000000000 [ 6525.871913] x11: 0000000000000001 x10: ffff8000000a660c [ 6525.877220] x9 : ffff800010951810 x8 : ffff8000130cbc38 [ 6525.882528] x7 : 0000000000000000 x6 : 0000009864cfa881 [ 6525.887836] x5 : 00ffffffffffffff x4 : 002880ba1a0b3e9f [ 6525.893144] x3 : 0000000000000018 x2 : ffff8000000a4374 [ 6525.898452] x1 : 000000000000000a x0 : 0000000000000009 [ 6525.903760] Call trace: [ 6525.906202] bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.911076] bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.915957] bpf_dispatcher_xdp_func+0x14/0x20 [ 6525.920398] bpf_test_run+0x70/0x1b0 [ 6525.923969] bpf_prog_test_run_xdp+0xec/0x190 [ 6525.928326] __do_sys_bpf+0xc88/0x1b28 [ 6525.932072] __arm64_sys_bpf+0x24/0x30 [ 6525.935820] el0_svc_common.constprop.0+0x70/0x168 [ 6525.940607] do_el0_svc+0x28/0x88 [ 6525.943920] el0_sync_handler+0x88/0x190 [ 6525.947838] el0_sync+0x140/0x180 [ 6525.951154] Code: d4202000 d4202000 d4202000 d4202000 (d4202000) [ 6525.957249] ---[ end trace cecc3f93b14927e2 ]--- The reason is the offset[] creation and later usage while building the eBPF body. The code currently omits the first instruction, since build_insn() will increase our ctx->idx before saving it. That was fine up until bounded eBPF loops were introduced. After that introduction, offset[0] must be the offset of the end of prologue which is the start of the 1st insn while, offset[n] holds the offset of the end of n-th insn. When "taken loop with back jump to 1st insn" test runs, it will eventually call bpf2a64_offset(-1, 2, ctx). Since negative indexing is permitted, the current outcome depends on the value stored in ctx->offset[-1], which has nothing to do with our array. If the value happens to be 0 the tests will work. If not this error triggers. 7c2e988 ("bpf: fix x64 JIT code generation for jmp to 1st insn") fixed an indentical bug on x86 when eBPF bounded loops were introduced. So let's fix it by creating the ctx->offset[] correctly in the first place and account for the first instruction while calculating the arm instruction offsets. Fixes: 2589726 ("bpf: introduce bounded loops") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reported-by: Jiri Olsa <jolsa@kernel.org> Co-developed-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Co-developed-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> --- Changes since v1: - Added Co-developed-by, Reported-by and Fixes tags correctly - Describe the expected context of ctx->offset[] in comments arch/arm64/net/bpf_jit_comp.c | 28 ++++++++++++++++++++-------- 1 file changed, 20 insertions(+), 8 deletions(-)
[ 6525.735488] Unexpected kernel BRK exception at EL1 [ 6525.735502] Internal error: ptrace BRK handler: f2000100 [#1] SMP [ 6525.741609] Modules linked in: nls_utf8 cifs libdes libarc4 dns_resolver fscache binfmt_misc nls_ascii nls_cp437 vfat fat aes_ce_blk crypto_simd cryptd aes_ce_cipher ghash_ce gf128mul efi_pstore sha2_ce sha256_arm64 sha1_ce evdev efivars efivarfs ip_tables x_tables autofs4 btrfs blake2b_generic xor xor_neon zstd_compress raid6_pq libcrc32c crc32c_generic ahci xhci_pci libahci xhci_hcd igb libata i2c_algo_bit nvme realtek usbcore nvme_core scsi_mod t10_pi netsec mdio_devres of_mdio gpio_keys fixed_phy libphy gpio_mb86s7x [ 6525.787760] CPU: 3 PID: 7881 Comm: test_verifier Tainted: G W 5.9.0-rc1+ #47 [ 6525.796111] Hardware name: Socionext SynQuacer E-series DeveloperBox, BIOS build #1 Jun 6 2020 [ 6525.804812] pstate: 20000005 (nzCv daif -PAN -UAO BTYPE=--) [ 6525.810390] pc : bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.815613] lr : bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.820832] sp : ffff8000130cbb80 [ 6525.824141] x29: ffff8000130cbbb0 x28: 0000000000000000 [ 6525.829451] x27: 000005ef6fcbf39b x26: 0000000000000000 [ 6525.834759] x25: ffff8000130cbb80 x24: ffff800011dc7038 [ 6525.840067] x23: ffff8000130cbd00 x22: ffff0008f624d080 [ 6525.845375] x21: 0000000000000001 x20: ffff800011dc7000 [ 6525.850682] x19: 0000000000000000 x18: 0000000000000000 [ 6525.855990] x17: 0000000000000000 x16: 0000000000000000 [ 6525.861298] x15: 0000000000000000 x14: 0000000000000000 [ 6525.866606] x13: 0000000000000000 x12: 0000000000000000 [ 6525.871913] x11: 0000000000000001 x10: ffff8000000a660c [ 6525.877220] x9 : ffff800010951810 x8 : ffff8000130cbc38 [ 6525.882528] x7 : 0000000000000000 x6 : 0000009864cfa881 [ 6525.887836] x5 : 00ffffffffffffff x4 : 002880ba1a0b3e9f [ 6525.893144] x3 : 0000000000000018 x2 : ffff8000000a4374 [ 6525.898452] x1 : 000000000000000a x0 : 0000000000000009 [ 6525.903760] Call trace: [ 6525.906202] bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.911076] bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.915957] bpf_dispatcher_xdp_func+0x14/0x20 [ 6525.920398] bpf_test_run+0x70/0x1b0 [ 6525.923969] bpf_prog_test_run_xdp+0xec/0x190 [ 6525.928326] __do_sys_bpf+0xc88/0x1b28 [ 6525.932072] __arm64_sys_bpf+0x24/0x30 [ 6525.935820] el0_svc_common.constprop.0+0x70/0x168 [ 6525.940607] do_el0_svc+0x28/0x88 [ 6525.943920] el0_sync_handler+0x88/0x190 [ 6525.947838] el0_sync+0x140/0x180 [ 6525.951154] Code: d4202000 d4202000 d4202000 d4202000 (d4202000) [ 6525.957249] ---[ end trace cecc3f93b14927e2 ]--- The reason is the offset[] creation and later usage while building the eBPF body. The code currently omits the first instruction, since build_insn() will increase our ctx->idx before saving it. That was fine up until bounded eBPF loops were introduced. After that introduction, offset[0] must be the offset of the end of prologue which is the start of the 1st insn while, offset[n] holds the offset of the end of n-th insn. When "taken loop with back jump to 1st insn" test runs, it will eventually call bpf2a64_offset(-1, 2, ctx). Since negative indexing is permitted, the current outcome depends on the value stored in ctx->offset[-1], which has nothing to do with our array. If the value happens to be 0 the tests will work. If not this error triggers. 7c2e988 ("bpf: fix x64 JIT code generation for jmp to 1st insn") fixed an indentical bug on x86 when eBPF bounded loops were introduced. So let's fix it by creating the ctx->offset[] correctly in the first place and account for the first instruction while calculating the arm instruction offsets. Fixes: 2589726 ("bpf: introduce bounded loops") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reported-by: Jiri Olsa <jolsa@kernel.org> Co-developed-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Co-developed-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> --- Changes since v1: - Added Co-developed-by, Reported-by and Fixes tags correctly - Describe the expected context of ctx->offset[] in comments arch/arm64/net/bpf_jit_comp.c | 28 ++++++++++++++++++++-------- 1 file changed, 20 insertions(+), 8 deletions(-)
[ 6525.735488] Unexpected kernel BRK exception at EL1 [ 6525.735502] Internal error: ptrace BRK handler: f2000100 [#1] SMP [ 6525.741609] Modules linked in: nls_utf8 cifs libdes libarc4 dns_resolver fscache binfmt_misc nls_ascii nls_cp437 vfat fat aes_ce_blk crypto_simd cryptd aes_ce_cipher ghash_ce gf128mul efi_pstore sha2_ce sha256_arm64 sha1_ce evdev efivars efivarfs ip_tables x_tables autofs4 btrfs blake2b_generic xor xor_neon zstd_compress raid6_pq libcrc32c crc32c_generic ahci xhci_pci libahci xhci_hcd igb libata i2c_algo_bit nvme realtek usbcore nvme_core scsi_mod t10_pi netsec mdio_devres of_mdio gpio_keys fixed_phy libphy gpio_mb86s7x [ 6525.787760] CPU: 3 PID: 7881 Comm: test_verifier Tainted: G W 5.9.0-rc1+ #47 [ 6525.796111] Hardware name: Socionext SynQuacer E-series DeveloperBox, BIOS build #1 Jun 6 2020 [ 6525.804812] pstate: 20000005 (nzCv daif -PAN -UAO BTYPE=--) [ 6525.810390] pc : bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.815613] lr : bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.820832] sp : ffff8000130cbb80 [ 6525.824141] x29: ffff8000130cbbb0 x28: 0000000000000000 [ 6525.829451] x27: 000005ef6fcbf39b x26: 0000000000000000 [ 6525.834759] x25: ffff8000130cbb80 x24: ffff800011dc7038 [ 6525.840067] x23: ffff8000130cbd00 x22: ffff0008f624d080 [ 6525.845375] x21: 0000000000000001 x20: ffff800011dc7000 [ 6525.850682] x19: 0000000000000000 x18: 0000000000000000 [ 6525.855990] x17: 0000000000000000 x16: 0000000000000000 [ 6525.861298] x15: 0000000000000000 x14: 0000000000000000 [ 6525.866606] x13: 0000000000000000 x12: 0000000000000000 [ 6525.871913] x11: 0000000000000001 x10: ffff8000000a660c [ 6525.877220] x9 : ffff800010951810 x8 : ffff8000130cbc38 [ 6525.882528] x7 : 0000000000000000 x6 : 0000009864cfa881 [ 6525.887836] x5 : 00ffffffffffffff x4 : 002880ba1a0b3e9f [ 6525.893144] x3 : 0000000000000018 x2 : ffff8000000a4374 [ 6525.898452] x1 : 000000000000000a x0 : 0000000000000009 [ 6525.903760] Call trace: [ 6525.906202] bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.911076] bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.915957] bpf_dispatcher_xdp_func+0x14/0x20 [ 6525.920398] bpf_test_run+0x70/0x1b0 [ 6525.923969] bpf_prog_test_run_xdp+0xec/0x190 [ 6525.928326] __do_sys_bpf+0xc88/0x1b28 [ 6525.932072] __arm64_sys_bpf+0x24/0x30 [ 6525.935820] el0_svc_common.constprop.0+0x70/0x168 [ 6525.940607] do_el0_svc+0x28/0x88 [ 6525.943920] el0_sync_handler+0x88/0x190 [ 6525.947838] el0_sync+0x140/0x180 [ 6525.951154] Code: d4202000 d4202000 d4202000 d4202000 (d4202000) [ 6525.957249] ---[ end trace cecc3f93b14927e2 ]--- The reason is the offset[] creation and later usage while building the eBPF body. The code currently omits the first instruction, since build_insn() will increase our ctx->idx before saving it. That was fine up until bounded eBPF loops were introduced. After that introduction, offset[0] must be the offset of the end of prologue which is the start of the 1st insn while, offset[n] holds the offset of the end of n-th insn. When "taken loop with back jump to 1st insn" test runs, it will eventually call bpf2a64_offset(-1, 2, ctx). Since negative indexing is permitted, the current outcome depends on the value stored in ctx->offset[-1], which has nothing to do with our array. If the value happens to be 0 the tests will work. If not this error triggers. 7c2e988 ("bpf: fix x64 JIT code generation for jmp to 1st insn") fixed an indentical bug on x86 when eBPF bounded loops were introduced. So let's fix it by creating the ctx->offset[] correctly in the first place and account for the first instruction while calculating the arm instruction offsets. Fixes: 2589726 ("bpf: introduce bounded loops") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reported-by: Jiri Olsa <jolsa@kernel.org> Co-developed-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Co-developed-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> --- Changes since v1: - Added Co-developed-by, Reported-by and Fixes tags correctly - Describe the expected context of ctx->offset[] in comments arch/arm64/net/bpf_jit_comp.c | 28 ++++++++++++++++++++-------- 1 file changed, 20 insertions(+), 8 deletions(-)
[ 6525.735488] Unexpected kernel BRK exception at EL1 [ 6525.735502] Internal error: ptrace BRK handler: f2000100 [#1] SMP [ 6525.741609] Modules linked in: nls_utf8 cifs libdes libarc4 dns_resolver fscache binfmt_misc nls_ascii nls_cp437 vfat fat aes_ce_blk crypto_simd cryptd aes_ce_cipher ghash_ce gf128mul efi_pstore sha2_ce sha256_arm64 sha1_ce evdev efivars efivarfs ip_tables x_tables autofs4 btrfs blake2b_generic xor xor_neon zstd_compress raid6_pq libcrc32c crc32c_generic ahci xhci_pci libahci xhci_hcd igb libata i2c_algo_bit nvme realtek usbcore nvme_core scsi_mod t10_pi netsec mdio_devres of_mdio gpio_keys fixed_phy libphy gpio_mb86s7x [ 6525.787760] CPU: 3 PID: 7881 Comm: test_verifier Tainted: G W 5.9.0-rc1+ #47 [ 6525.796111] Hardware name: Socionext SynQuacer E-series DeveloperBox, BIOS build #1 Jun 6 2020 [ 6525.804812] pstate: 20000005 (nzCv daif -PAN -UAO BTYPE=--) [ 6525.810390] pc : bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.815613] lr : bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.820832] sp : ffff8000130cbb80 [ 6525.824141] x29: ffff8000130cbbb0 x28: 0000000000000000 [ 6525.829451] x27: 000005ef6fcbf39b x26: 0000000000000000 [ 6525.834759] x25: ffff8000130cbb80 x24: ffff800011dc7038 [ 6525.840067] x23: ffff8000130cbd00 x22: ffff0008f624d080 [ 6525.845375] x21: 0000000000000001 x20: ffff800011dc7000 [ 6525.850682] x19: 0000000000000000 x18: 0000000000000000 [ 6525.855990] x17: 0000000000000000 x16: 0000000000000000 [ 6525.861298] x15: 0000000000000000 x14: 0000000000000000 [ 6525.866606] x13: 0000000000000000 x12: 0000000000000000 [ 6525.871913] x11: 0000000000000001 x10: ffff8000000a660c [ 6525.877220] x9 : ffff800010951810 x8 : ffff8000130cbc38 [ 6525.882528] x7 : 0000000000000000 x6 : 0000009864cfa881 [ 6525.887836] x5 : 00ffffffffffffff x4 : 002880ba1a0b3e9f [ 6525.893144] x3 : 0000000000000018 x2 : ffff8000000a4374 [ 6525.898452] x1 : 000000000000000a x0 : 0000000000000009 [ 6525.903760] Call trace: [ 6525.906202] bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.911076] bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.915957] bpf_dispatcher_xdp_func+0x14/0x20 [ 6525.920398] bpf_test_run+0x70/0x1b0 [ 6525.923969] bpf_prog_test_run_xdp+0xec/0x190 [ 6525.928326] __do_sys_bpf+0xc88/0x1b28 [ 6525.932072] __arm64_sys_bpf+0x24/0x30 [ 6525.935820] el0_svc_common.constprop.0+0x70/0x168 [ 6525.940607] do_el0_svc+0x28/0x88 [ 6525.943920] el0_sync_handler+0x88/0x190 [ 6525.947838] el0_sync+0x140/0x180 [ 6525.951154] Code: d4202000 d4202000 d4202000 d4202000 (d4202000) [ 6525.957249] ---[ end trace cecc3f93b14927e2 ]--- The reason is the offset[] creation and later usage while building the eBPF body. The code currently omits the first instruction, since build_insn() will increase our ctx->idx before saving it. That was fine up until bounded eBPF loops were introduced. After that introduction, offset[0] must be the offset of the end of prologue which is the start of the 1st insn while, offset[n] holds the offset of the end of n-th insn. When "taken loop with back jump to 1st insn" test runs, it will eventually call bpf2a64_offset(-1, 2, ctx). Since negative indexing is permitted, the current outcome depends on the value stored in ctx->offset[-1], which has nothing to do with our array. If the value happens to be 0 the tests will work. If not this error triggers. 7c2e988 ("bpf: fix x64 JIT code generation for jmp to 1st insn") fixed an indentical bug on x86 when eBPF bounded loops were introduced. So let's fix it by creating the ctx->offset[] correctly in the first place and account for the first instruction while calculating the arm instruction offsets. Fixes: 2589726 ("bpf: introduce bounded loops") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reported-by: Jiri Olsa <jolsa@kernel.org> Co-developed-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Co-developed-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> --- Changes since v1: - Added Co-developed-by, Reported-by and Fixes tags correctly - Describe the expected context of ctx->offset[] in comments arch/arm64/net/bpf_jit_comp.c | 28 ++++++++++++++++++++-------- 1 file changed, 20 insertions(+), 8 deletions(-)
[ 6525.735488] Unexpected kernel BRK exception at EL1 [ 6525.735502] Internal error: ptrace BRK handler: f2000100 [#1] SMP [ 6525.741609] Modules linked in: nls_utf8 cifs libdes libarc4 dns_resolver fscache binfmt_misc nls_ascii nls_cp437 vfat fat aes_ce_blk crypto_simd cryptd aes_ce_cipher ghash_ce gf128mul efi_pstore sha2_ce sha256_arm64 sha1_ce evdev efivars efivarfs ip_tables x_tables autofs4 btrfs blake2b_generic xor xor_neon zstd_compress raid6_pq libcrc32c crc32c_generic ahci xhci_pci libahci xhci_hcd igb libata i2c_algo_bit nvme realtek usbcore nvme_core scsi_mod t10_pi netsec mdio_devres of_mdio gpio_keys fixed_phy libphy gpio_mb86s7x [ 6525.787760] CPU: 3 PID: 7881 Comm: test_verifier Tainted: G W 5.9.0-rc1+ #47 [ 6525.796111] Hardware name: Socionext SynQuacer E-series DeveloperBox, BIOS build #1 Jun 6 2020 [ 6525.804812] pstate: 20000005 (nzCv daif -PAN -UAO BTYPE=--) [ 6525.810390] pc : bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.815613] lr : bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.820832] sp : ffff8000130cbb80 [ 6525.824141] x29: ffff8000130cbbb0 x28: 0000000000000000 [ 6525.829451] x27: 000005ef6fcbf39b x26: 0000000000000000 [ 6525.834759] x25: ffff8000130cbb80 x24: ffff800011dc7038 [ 6525.840067] x23: ffff8000130cbd00 x22: ffff0008f624d080 [ 6525.845375] x21: 0000000000000001 x20: ffff800011dc7000 [ 6525.850682] x19: 0000000000000000 x18: 0000000000000000 [ 6525.855990] x17: 0000000000000000 x16: 0000000000000000 [ 6525.861298] x15: 0000000000000000 x14: 0000000000000000 [ 6525.866606] x13: 0000000000000000 x12: 0000000000000000 [ 6525.871913] x11: 0000000000000001 x10: ffff8000000a660c [ 6525.877220] x9 : ffff800010951810 x8 : ffff8000130cbc38 [ 6525.882528] x7 : 0000000000000000 x6 : 0000009864cfa881 [ 6525.887836] x5 : 00ffffffffffffff x4 : 002880ba1a0b3e9f [ 6525.893144] x3 : 0000000000000018 x2 : ffff8000000a4374 [ 6525.898452] x1 : 000000000000000a x0 : 0000000000000009 [ 6525.903760] Call trace: [ 6525.906202] bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.911076] bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.915957] bpf_dispatcher_xdp_func+0x14/0x20 [ 6525.920398] bpf_test_run+0x70/0x1b0 [ 6525.923969] bpf_prog_test_run_xdp+0xec/0x190 [ 6525.928326] __do_sys_bpf+0xc88/0x1b28 [ 6525.932072] __arm64_sys_bpf+0x24/0x30 [ 6525.935820] el0_svc_common.constprop.0+0x70/0x168 [ 6525.940607] do_el0_svc+0x28/0x88 [ 6525.943920] el0_sync_handler+0x88/0x190 [ 6525.947838] el0_sync+0x140/0x180 [ 6525.951154] Code: d4202000 d4202000 d4202000 d4202000 (d4202000) [ 6525.957249] ---[ end trace cecc3f93b14927e2 ]--- The reason is the offset[] creation and later usage while building the eBPF body. The code currently omits the first instruction, since build_insn() will increase our ctx->idx before saving it. That was fine up until bounded eBPF loops were introduced. After that introduction, offset[0] must be the offset of the end of prologue which is the start of the 1st insn while, offset[n] holds the offset of the end of n-th insn. When "taken loop with back jump to 1st insn" test runs, it will eventually call bpf2a64_offset(-1, 2, ctx). Since negative indexing is permitted, the current outcome depends on the value stored in ctx->offset[-1], which has nothing to do with our array. If the value happens to be 0 the tests will work. If not this error triggers. 7c2e988 ("bpf: fix x64 JIT code generation for jmp to 1st insn") fixed an indentical bug on x86 when eBPF bounded loops were introduced. So let's fix it by creating the ctx->offset[] correctly in the first place and account for the first instruction while calculating the arm instruction offsets. Fixes: 2589726 ("bpf: introduce bounded loops") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reported-by: Jiri Olsa <jolsa@kernel.org> Co-developed-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Co-developed-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> --- Changes since v1: - Added Co-developed-by, Reported-by and Fixes tags correctly - Describe the expected context of ctx->offset[] in comments arch/arm64/net/bpf_jit_comp.c | 28 ++++++++++++++++++++-------- 1 file changed, 20 insertions(+), 8 deletions(-)
[ 6525.735488] Unexpected kernel BRK exception at EL1 [ 6525.735502] Internal error: ptrace BRK handler: f2000100 [#1] SMP [ 6525.741609] Modules linked in: nls_utf8 cifs libdes libarc4 dns_resolver fscache binfmt_misc nls_ascii nls_cp437 vfat fat aes_ce_blk crypto_simd cryptd aes_ce_cipher ghash_ce gf128mul efi_pstore sha2_ce sha256_arm64 sha1_ce evdev efivars efivarfs ip_tables x_tables autofs4 btrfs blake2b_generic xor xor_neon zstd_compress raid6_pq libcrc32c crc32c_generic ahci xhci_pci libahci xhci_hcd igb libata i2c_algo_bit nvme realtek usbcore nvme_core scsi_mod t10_pi netsec mdio_devres of_mdio gpio_keys fixed_phy libphy gpio_mb86s7x [ 6525.787760] CPU: 3 PID: 7881 Comm: test_verifier Tainted: G W 5.9.0-rc1+ #47 [ 6525.796111] Hardware name: Socionext SynQuacer E-series DeveloperBox, BIOS build #1 Jun 6 2020 [ 6525.804812] pstate: 20000005 (nzCv daif -PAN -UAO BTYPE=--) [ 6525.810390] pc : bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.815613] lr : bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.820832] sp : ffff8000130cbb80 [ 6525.824141] x29: ffff8000130cbbb0 x28: 0000000000000000 [ 6525.829451] x27: 000005ef6fcbf39b x26: 0000000000000000 [ 6525.834759] x25: ffff8000130cbb80 x24: ffff800011dc7038 [ 6525.840067] x23: ffff8000130cbd00 x22: ffff0008f624d080 [ 6525.845375] x21: 0000000000000001 x20: ffff800011dc7000 [ 6525.850682] x19: 0000000000000000 x18: 0000000000000000 [ 6525.855990] x17: 0000000000000000 x16: 0000000000000000 [ 6525.861298] x15: 0000000000000000 x14: 0000000000000000 [ 6525.866606] x13: 0000000000000000 x12: 0000000000000000 [ 6525.871913] x11: 0000000000000001 x10: ffff8000000a660c [ 6525.877220] x9 : ffff800010951810 x8 : ffff8000130cbc38 [ 6525.882528] x7 : 0000000000000000 x6 : 0000009864cfa881 [ 6525.887836] x5 : 00ffffffffffffff x4 : 002880ba1a0b3e9f [ 6525.893144] x3 : 0000000000000018 x2 : ffff8000000a4374 [ 6525.898452] x1 : 000000000000000a x0 : 0000000000000009 [ 6525.903760] Call trace: [ 6525.906202] bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.911076] bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.915957] bpf_dispatcher_xdp_func+0x14/0x20 [ 6525.920398] bpf_test_run+0x70/0x1b0 [ 6525.923969] bpf_prog_test_run_xdp+0xec/0x190 [ 6525.928326] __do_sys_bpf+0xc88/0x1b28 [ 6525.932072] __arm64_sys_bpf+0x24/0x30 [ 6525.935820] el0_svc_common.constprop.0+0x70/0x168 [ 6525.940607] do_el0_svc+0x28/0x88 [ 6525.943920] el0_sync_handler+0x88/0x190 [ 6525.947838] el0_sync+0x140/0x180 [ 6525.951154] Code: d4202000 d4202000 d4202000 d4202000 (d4202000) [ 6525.957249] ---[ end trace cecc3f93b14927e2 ]--- The reason is the offset[] creation and later usage while building the eBPF body. The code currently omits the first instruction, since build_insn() will increase our ctx->idx before saving it. That was fine up until bounded eBPF loops were introduced. After that introduction, offset[0] must be the offset of the end of prologue which is the start of the 1st insn while, offset[n] holds the offset of the end of n-th insn. When "taken loop with back jump to 1st insn" test runs, it will eventually call bpf2a64_offset(-1, 2, ctx). Since negative indexing is permitted, the current outcome depends on the value stored in ctx->offset[-1], which has nothing to do with our array. If the value happens to be 0 the tests will work. If not this error triggers. 7c2e988 ("bpf: fix x64 JIT code generation for jmp to 1st insn") fixed an indentical bug on x86 when eBPF bounded loops were introduced. So let's fix it by creating the ctx->offset[] correctly in the first place and account for the first instruction while calculating the arm instruction offsets. Fixes: 2589726 ("bpf: introduce bounded loops") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reported-by: Jiri Olsa <jolsa@kernel.org> Co-developed-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Co-developed-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> --- Changes since v1: - Added Co-developed-by, Reported-by and Fixes tags correctly - Describe the expected context of ctx->offset[] in comments arch/arm64/net/bpf_jit_comp.c | 28 ++++++++++++++++++++-------- 1 file changed, 20 insertions(+), 8 deletions(-)
[ 6525.735488] Unexpected kernel BRK exception at EL1 [ 6525.735502] Internal error: ptrace BRK handler: f2000100 [#1] SMP [ 6525.741609] Modules linked in: nls_utf8 cifs libdes libarc4 dns_resolver fscache binfmt_misc nls_ascii nls_cp437 vfat fat aes_ce_blk crypto_simd cryptd aes_ce_cipher ghash_ce gf128mul efi_pstore sha2_ce sha256_arm64 sha1_ce evdev efivars efivarfs ip_tables x_tables autofs4 btrfs blake2b_generic xor xor_neon zstd_compress raid6_pq libcrc32c crc32c_generic ahci xhci_pci libahci xhci_hcd igb libata i2c_algo_bit nvme realtek usbcore nvme_core scsi_mod t10_pi netsec mdio_devres of_mdio gpio_keys fixed_phy libphy gpio_mb86s7x [ 6525.787760] CPU: 3 PID: 7881 Comm: test_verifier Tainted: G W 5.9.0-rc1+ #47 [ 6525.796111] Hardware name: Socionext SynQuacer E-series DeveloperBox, BIOS build #1 Jun 6 2020 [ 6525.804812] pstate: 20000005 (nzCv daif -PAN -UAO BTYPE=--) [ 6525.810390] pc : bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.815613] lr : bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.820832] sp : ffff8000130cbb80 [ 6525.824141] x29: ffff8000130cbbb0 x28: 0000000000000000 [ 6525.829451] x27: 000005ef6fcbf39b x26: 0000000000000000 [ 6525.834759] x25: ffff8000130cbb80 x24: ffff800011dc7038 [ 6525.840067] x23: ffff8000130cbd00 x22: ffff0008f624d080 [ 6525.845375] x21: 0000000000000001 x20: ffff800011dc7000 [ 6525.850682] x19: 0000000000000000 x18: 0000000000000000 [ 6525.855990] x17: 0000000000000000 x16: 0000000000000000 [ 6525.861298] x15: 0000000000000000 x14: 0000000000000000 [ 6525.866606] x13: 0000000000000000 x12: 0000000000000000 [ 6525.871913] x11: 0000000000000001 x10: ffff8000000a660c [ 6525.877220] x9 : ffff800010951810 x8 : ffff8000130cbc38 [ 6525.882528] x7 : 0000000000000000 x6 : 0000009864cfa881 [ 6525.887836] x5 : 00ffffffffffffff x4 : 002880ba1a0b3e9f [ 6525.893144] x3 : 0000000000000018 x2 : ffff8000000a4374 [ 6525.898452] x1 : 000000000000000a x0 : 0000000000000009 [ 6525.903760] Call trace: [ 6525.906202] bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.911076] bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.915957] bpf_dispatcher_xdp_func+0x14/0x20 [ 6525.920398] bpf_test_run+0x70/0x1b0 [ 6525.923969] bpf_prog_test_run_xdp+0xec/0x190 [ 6525.928326] __do_sys_bpf+0xc88/0x1b28 [ 6525.932072] __arm64_sys_bpf+0x24/0x30 [ 6525.935820] el0_svc_common.constprop.0+0x70/0x168 [ 6525.940607] do_el0_svc+0x28/0x88 [ 6525.943920] el0_sync_handler+0x88/0x190 [ 6525.947838] el0_sync+0x140/0x180 [ 6525.951154] Code: d4202000 d4202000 d4202000 d4202000 (d4202000) [ 6525.957249] ---[ end trace cecc3f93b14927e2 ]--- The reason is the offset[] creation and later usage while building the eBPF body. The code currently omits the first instruction, since build_insn() will increase our ctx->idx before saving it. That was fine up until bounded eBPF loops were introduced. After that introduction, offset[0] must be the offset of the end of prologue which is the start of the 1st insn while, offset[n] holds the offset of the end of n-th insn. When "taken loop with back jump to 1st insn" test runs, it will eventually call bpf2a64_offset(-1, 2, ctx). Since negative indexing is permitted, the current outcome depends on the value stored in ctx->offset[-1], which has nothing to do with our array. If the value happens to be 0 the tests will work. If not this error triggers. 7c2e988 ("bpf: fix x64 JIT code generation for jmp to 1st insn") fixed an indentical bug on x86 when eBPF bounded loops were introduced. So let's fix it by creating the ctx->offset[] correctly in the first place and account for the first instruction while calculating the arm instruction offsets. Fixes: 2589726 ("bpf: introduce bounded loops") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reported-by: Jiri Olsa <jolsa@kernel.org> Co-developed-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Co-developed-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> --- Changes since v1: - Added Co-developed-by, Reported-by and Fixes tags correctly - Describe the expected context of ctx->offset[] in comments arch/arm64/net/bpf_jit_comp.c | 28 ++++++++++++++++++++-------- 1 file changed, 20 insertions(+), 8 deletions(-)
[ 6525.735488] Unexpected kernel BRK exception at EL1 [ 6525.735502] Internal error: ptrace BRK handler: f2000100 [#1] SMP [ 6525.741609] Modules linked in: nls_utf8 cifs libdes libarc4 dns_resolver fscache binfmt_misc nls_ascii nls_cp437 vfat fat aes_ce_blk crypto_simd cryptd aes_ce_cipher ghash_ce gf128mul efi_pstore sha2_ce sha256_arm64 sha1_ce evdev efivars efivarfs ip_tables x_tables autofs4 btrfs blake2b_generic xor xor_neon zstd_compress raid6_pq libcrc32c crc32c_generic ahci xhci_pci libahci xhci_hcd igb libata i2c_algo_bit nvme realtek usbcore nvme_core scsi_mod t10_pi netsec mdio_devres of_mdio gpio_keys fixed_phy libphy gpio_mb86s7x [ 6525.787760] CPU: 3 PID: 7881 Comm: test_verifier Tainted: G W 5.9.0-rc1+ #47 [ 6525.796111] Hardware name: Socionext SynQuacer E-series DeveloperBox, BIOS build #1 Jun 6 2020 [ 6525.804812] pstate: 20000005 (nzCv daif -PAN -UAO BTYPE=--) [ 6525.810390] pc : bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.815613] lr : bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.820832] sp : ffff8000130cbb80 [ 6525.824141] x29: ffff8000130cbbb0 x28: 0000000000000000 [ 6525.829451] x27: 000005ef6fcbf39b x26: 0000000000000000 [ 6525.834759] x25: ffff8000130cbb80 x24: ffff800011dc7038 [ 6525.840067] x23: ffff8000130cbd00 x22: ffff0008f624d080 [ 6525.845375] x21: 0000000000000001 x20: ffff800011dc7000 [ 6525.850682] x19: 0000000000000000 x18: 0000000000000000 [ 6525.855990] x17: 0000000000000000 x16: 0000000000000000 [ 6525.861298] x15: 0000000000000000 x14: 0000000000000000 [ 6525.866606] x13: 0000000000000000 x12: 0000000000000000 [ 6525.871913] x11: 0000000000000001 x10: ffff8000000a660c [ 6525.877220] x9 : ffff800010951810 x8 : ffff8000130cbc38 [ 6525.882528] x7 : 0000000000000000 x6 : 0000009864cfa881 [ 6525.887836] x5 : 00ffffffffffffff x4 : 002880ba1a0b3e9f [ 6525.893144] x3 : 0000000000000018 x2 : ffff8000000a4374 [ 6525.898452] x1 : 000000000000000a x0 : 0000000000000009 [ 6525.903760] Call trace: [ 6525.906202] bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.911076] bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.915957] bpf_dispatcher_xdp_func+0x14/0x20 [ 6525.920398] bpf_test_run+0x70/0x1b0 [ 6525.923969] bpf_prog_test_run_xdp+0xec/0x190 [ 6525.928326] __do_sys_bpf+0xc88/0x1b28 [ 6525.932072] __arm64_sys_bpf+0x24/0x30 [ 6525.935820] el0_svc_common.constprop.0+0x70/0x168 [ 6525.940607] do_el0_svc+0x28/0x88 [ 6525.943920] el0_sync_handler+0x88/0x190 [ 6525.947838] el0_sync+0x140/0x180 [ 6525.951154] Code: d4202000 d4202000 d4202000 d4202000 (d4202000) [ 6525.957249] ---[ end trace cecc3f93b14927e2 ]--- The reason is the offset[] creation and later usage while building the eBPF body. The code currently omits the first instruction, since build_insn() will increase our ctx->idx before saving it. That was fine up until bounded eBPF loops were introduced. After that introduction, offset[0] must be the offset of the end of prologue which is the start of the 1st insn while, offset[n] holds the offset of the end of n-th insn. When "taken loop with back jump to 1st insn" test runs, it will eventually call bpf2a64_offset(-1, 2, ctx). Since negative indexing is permitted, the current outcome depends on the value stored in ctx->offset[-1], which has nothing to do with our array. If the value happens to be 0 the tests will work. If not this error triggers. 7c2e988 ("bpf: fix x64 JIT code generation for jmp to 1st insn") fixed an indentical bug on x86 when eBPF bounded loops were introduced. So let's fix it by creating the ctx->offset[] correctly in the first place and account for the first instruction while calculating the arm instruction offsets. Fixes: 2589726 ("bpf: introduce bounded loops") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reported-by: Jiri Olsa <jolsa@kernel.org> Co-developed-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Co-developed-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> --- Changes since v1: - Added Co-developed-by, Reported-by and Fixes tags correctly - Describe the expected context of ctx->offset[] in comments arch/arm64/net/bpf_jit_comp.c | 28 ++++++++++++++++++++-------- 1 file changed, 20 insertions(+), 8 deletions(-)
[ 6525.735488] Unexpected kernel BRK exception at EL1 [ 6525.735502] Internal error: ptrace BRK handler: f2000100 [#1] SMP [ 6525.741609] Modules linked in: nls_utf8 cifs libdes libarc4 dns_resolver fscache binfmt_misc nls_ascii nls_cp437 vfat fat aes_ce_blk crypto_simd cryptd aes_ce_cipher ghash_ce gf128mul efi_pstore sha2_ce sha256_arm64 sha1_ce evdev efivars efivarfs ip_tables x_tables autofs4 btrfs blake2b_generic xor xor_neon zstd_compress raid6_pq libcrc32c crc32c_generic ahci xhci_pci libahci xhci_hcd igb libata i2c_algo_bit nvme realtek usbcore nvme_core scsi_mod t10_pi netsec mdio_devres of_mdio gpio_keys fixed_phy libphy gpio_mb86s7x [ 6525.787760] CPU: 3 PID: 7881 Comm: test_verifier Tainted: G W 5.9.0-rc1+ #47 [ 6525.796111] Hardware name: Socionext SynQuacer E-series DeveloperBox, BIOS build #1 Jun 6 2020 [ 6525.804812] pstate: 20000005 (nzCv daif -PAN -UAO BTYPE=--) [ 6525.810390] pc : bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.815613] lr : bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.820832] sp : ffff8000130cbb80 [ 6525.824141] x29: ffff8000130cbbb0 x28: 0000000000000000 [ 6525.829451] x27: 000005ef6fcbf39b x26: 0000000000000000 [ 6525.834759] x25: ffff8000130cbb80 x24: ffff800011dc7038 [ 6525.840067] x23: ffff8000130cbd00 x22: ffff0008f624d080 [ 6525.845375] x21: 0000000000000001 x20: ffff800011dc7000 [ 6525.850682] x19: 0000000000000000 x18: 0000000000000000 [ 6525.855990] x17: 0000000000000000 x16: 0000000000000000 [ 6525.861298] x15: 0000000000000000 x14: 0000000000000000 [ 6525.866606] x13: 0000000000000000 x12: 0000000000000000 [ 6525.871913] x11: 0000000000000001 x10: ffff8000000a660c [ 6525.877220] x9 : ffff800010951810 x8 : ffff8000130cbc38 [ 6525.882528] x7 : 0000000000000000 x6 : 0000009864cfa881 [ 6525.887836] x5 : 00ffffffffffffff x4 : 002880ba1a0b3e9f [ 6525.893144] x3 : 0000000000000018 x2 : ffff8000000a4374 [ 6525.898452] x1 : 000000000000000a x0 : 0000000000000009 [ 6525.903760] Call trace: [ 6525.906202] bpf_prog_c3d01833289b6311_F+0xc8/0x9f4 [ 6525.911076] bpf_prog_d53bb52e3f4483f9_F+0x38/0xc8c [ 6525.915957] bpf_dispatcher_xdp_func+0x14/0x20 [ 6525.920398] bpf_test_run+0x70/0x1b0 [ 6525.923969] bpf_prog_test_run_xdp+0xec/0x190 [ 6525.928326] __do_sys_bpf+0xc88/0x1b28 [ 6525.932072] __arm64_sys_bpf+0x24/0x30 [ 6525.935820] el0_svc_common.constprop.0+0x70/0x168 [ 6525.940607] do_el0_svc+0x28/0x88 [ 6525.943920] el0_sync_handler+0x88/0x190 [ 6525.947838] el0_sync+0x140/0x180 [ 6525.951154] Code: d4202000 d4202000 d4202000 d4202000 (d4202000) [ 6525.957249] ---[ end trace cecc3f93b14927e2 ]--- The reason is the offset[] creation and later usage while building the eBPF body. The code currently omits the first instruction, since build_insn() will increase our ctx->idx before saving it. That was fine up until bounded eBPF loops were introduced. After that introduction, offset[0] must be the offset of the end of prologue which is the start of the 1st insn while, offset[n] holds the offset of the end of n-th insn. When "taken loop with back jump to 1st insn" test runs, it will eventually call bpf2a64_offset(-1, 2, ctx). Since negative indexing is permitted, the current outcome depends on the value stored in ctx->offset[-1], which has nothing to do with our array. If the value happens to be 0 the tests will work. If not this error triggers. 7c2e988 ("bpf: fix x64 JIT code generation for jmp to 1st insn") fixed an indentical bug on x86 when eBPF bounded loops were introduced. So let's fix it by creating the ctx->offset[] correctly in the first place and account for the first instruction while calculating the arm instruction offsets. Fixes: 2589726 ("bpf: introduce bounded loops") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reported-by: Jiri Olsa <jolsa@kernel.org> Co-developed-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org> Co-developed-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> --- Changes since v1: - Added Co-developed-by, Reported-by and Fixes tags correctly - Describe the expected context of ctx->offset[] in comments arch/arm64/net/bpf_jit_comp.c | 28 ++++++++++++++++++++-------- 1 file changed, 20 insertions(+), 8 deletions(-)
…PAIR A NULL pointer dereference can occur in tcp_ao_finish_connect() during a connect() system call on a socket with a TCP-AO key added and TCP_REPAIR enabled. The function is called with skb being NULL and attempts to dereference it on tcp_hdr(skb)->seq without a prior skb validation. Fix this by checking if skb is NULL before dereferencing it. The commentary is taken from bpf_skops_established(), which is also called in the same flow. Unlike the function being patched, bpf_skops_established() validates the skb before dereferencing it. int main(void){ struct sockaddr_in sockaddr; struct tcp_ao_add tcp_ao; int sk; int one = 1; memset(&sockaddr,'\0',sizeof(sockaddr)); memset(&tcp_ao,'\0',sizeof(tcp_ao)); sk = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); sockaddr.sin_family = AF_INET; memcpy(tcp_ao.alg_name,"cmac(aes128)",12); memcpy(tcp_ao.key,"ABCDEFGHABCDEFGH",16); tcp_ao.keylen = 16; memcpy(&tcp_ao.addr,&sockaddr,sizeof(sockaddr)); setsockopt(sk, IPPROTO_TCP, TCP_AO_ADD_KEY, &tcp_ao, sizeof(tcp_ao)); setsockopt(sk, IPPROTO_TCP, TCP_REPAIR, &one, sizeof(one)); sockaddr.sin_family = AF_INET; sockaddr.sin_port = htobe16(123); inet_aton("127.0.0.1", &sockaddr.sin_addr); connect(sk,(struct sockaddr *)&sockaddr,sizeof(sockaddr)); return 0; } $ gcc tcp-ao-nullptr.c -o tcp-ao-nullptr -Wall $ unshare -Urn # ip addr add 127.0.0.1 dev lo # ./tcp-ao-nullptr BUG: kernel NULL pointer dereference, address: 00000000000000b6 PGD 1f648d067 P4D 1f648d067 PUD 1982e8067 PMD 0 Oops: Oops: 0000 [kernel-patches#1] SMP NOPTI Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 RIP: 0010:tcp_ao_finish_connect (net/ipv4/tcp_ao.c:1182) Fixes: 7c2ffaf ("net/tcp: Calculate TCP-AO traffic keys") Signed-off-by: Anderson Nascimento <anderson@allelesecurity.com> Reviewed-by: Dmitry Safonov <0x7f454c46@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: NipaLocal <nipa@local>
…PAIR A NULL pointer dereference can occur in tcp_ao_finish_connect() during a connect() system call on a socket with a TCP-AO key added and TCP_REPAIR enabled. The function is called with skb being NULL and attempts to dereference it on tcp_hdr(skb)->seq without a prior skb validation. Fix this by checking if skb is NULL before dereferencing it. The commentary is taken from bpf_skops_established(), which is also called in the same flow. Unlike the function being patched, bpf_skops_established() validates the skb before dereferencing it. int main(void){ struct sockaddr_in sockaddr; struct tcp_ao_add tcp_ao; int sk; int one = 1; memset(&sockaddr,'\0',sizeof(sockaddr)); memset(&tcp_ao,'\0',sizeof(tcp_ao)); sk = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); sockaddr.sin_family = AF_INET; memcpy(tcp_ao.alg_name,"cmac(aes128)",12); memcpy(tcp_ao.key,"ABCDEFGHABCDEFGH",16); tcp_ao.keylen = 16; memcpy(&tcp_ao.addr,&sockaddr,sizeof(sockaddr)); setsockopt(sk, IPPROTO_TCP, TCP_AO_ADD_KEY, &tcp_ao, sizeof(tcp_ao)); setsockopt(sk, IPPROTO_TCP, TCP_REPAIR, &one, sizeof(one)); sockaddr.sin_family = AF_INET; sockaddr.sin_port = htobe16(123); inet_aton("127.0.0.1", &sockaddr.sin_addr); connect(sk,(struct sockaddr *)&sockaddr,sizeof(sockaddr)); return 0; } $ gcc tcp-ao-nullptr.c -o tcp-ao-nullptr -Wall $ unshare -Urn # ip addr add 127.0.0.1 dev lo # ./tcp-ao-nullptr BUG: kernel NULL pointer dereference, address: 00000000000000b6 PGD 1f648d067 P4D 1f648d067 PUD 1982e8067 PMD 0 Oops: Oops: 0000 [kernel-patches#1] SMP NOPTI Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 RIP: 0010:tcp_ao_finish_connect (net/ipv4/tcp_ao.c:1182) Fixes: 7c2ffaf ("net/tcp: Calculate TCP-AO traffic keys") Signed-off-by: Anderson Nascimento <anderson@allelesecurity.com> Reviewed-by: Dmitry Safonov <0x7f454c46@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: NipaLocal <nipa@local>
…PAIR A NULL pointer dereference can occur in tcp_ao_finish_connect() during a connect() system call on a socket with a TCP-AO key added and TCP_REPAIR enabled. The function is called with skb being NULL and attempts to dereference it on tcp_hdr(skb)->seq without a prior skb validation. Fix this by checking if skb is NULL before dereferencing it. The commentary is taken from bpf_skops_established(), which is also called in the same flow. Unlike the function being patched, bpf_skops_established() validates the skb before dereferencing it. int main(void){ struct sockaddr_in sockaddr; struct tcp_ao_add tcp_ao; int sk; int one = 1; memset(&sockaddr,'\0',sizeof(sockaddr)); memset(&tcp_ao,'\0',sizeof(tcp_ao)); sk = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); sockaddr.sin_family = AF_INET; memcpy(tcp_ao.alg_name,"cmac(aes128)",12); memcpy(tcp_ao.key,"ABCDEFGHABCDEFGH",16); tcp_ao.keylen = 16; memcpy(&tcp_ao.addr,&sockaddr,sizeof(sockaddr)); setsockopt(sk, IPPROTO_TCP, TCP_AO_ADD_KEY, &tcp_ao, sizeof(tcp_ao)); setsockopt(sk, IPPROTO_TCP, TCP_REPAIR, &one, sizeof(one)); sockaddr.sin_family = AF_INET; sockaddr.sin_port = htobe16(123); inet_aton("127.0.0.1", &sockaddr.sin_addr); connect(sk,(struct sockaddr *)&sockaddr,sizeof(sockaddr)); return 0; } $ gcc tcp-ao-nullptr.c -o tcp-ao-nullptr -Wall $ unshare -Urn # ip addr add 127.0.0.1 dev lo # ./tcp-ao-nullptr BUG: kernel NULL pointer dereference, address: 00000000000000b6 PGD 1f648d067 P4D 1f648d067 PUD 1982e8067 PMD 0 Oops: Oops: 0000 [kernel-patches#1] SMP NOPTI Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 RIP: 0010:tcp_ao_finish_connect (net/ipv4/tcp_ao.c:1182) Fixes: 7c2ffaf ("net/tcp: Calculate TCP-AO traffic keys") Signed-off-by: Anderson Nascimento <anderson@allelesecurity.com> Reviewed-by: Dmitry Safonov <0x7f454c46@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: NipaLocal <nipa@local>
…PAIR A NULL pointer dereference can occur in tcp_ao_finish_connect() during a connect() system call on a socket with a TCP-AO key added and TCP_REPAIR enabled. The function is called with skb being NULL and attempts to dereference it on tcp_hdr(skb)->seq without a prior skb validation. Fix this by checking if skb is NULL before dereferencing it. The commentary is taken from bpf_skops_established(), which is also called in the same flow. Unlike the function being patched, bpf_skops_established() validates the skb before dereferencing it. int main(void){ struct sockaddr_in sockaddr; struct tcp_ao_add tcp_ao; int sk; int one = 1; memset(&sockaddr,'\0',sizeof(sockaddr)); memset(&tcp_ao,'\0',sizeof(tcp_ao)); sk = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); sockaddr.sin_family = AF_INET; memcpy(tcp_ao.alg_name,"cmac(aes128)",12); memcpy(tcp_ao.key,"ABCDEFGHABCDEFGH",16); tcp_ao.keylen = 16; memcpy(&tcp_ao.addr,&sockaddr,sizeof(sockaddr)); setsockopt(sk, IPPROTO_TCP, TCP_AO_ADD_KEY, &tcp_ao, sizeof(tcp_ao)); setsockopt(sk, IPPROTO_TCP, TCP_REPAIR, &one, sizeof(one)); sockaddr.sin_family = AF_INET; sockaddr.sin_port = htobe16(123); inet_aton("127.0.0.1", &sockaddr.sin_addr); connect(sk,(struct sockaddr *)&sockaddr,sizeof(sockaddr)); return 0; } $ gcc tcp-ao-nullptr.c -o tcp-ao-nullptr -Wall $ unshare -Urn # ip addr add 127.0.0.1 dev lo # ./tcp-ao-nullptr BUG: kernel NULL pointer dereference, address: 00000000000000b6 PGD 1f648d067 P4D 1f648d067 PUD 1982e8067 PMD 0 Oops: Oops: 0000 [kernel-patches#1] SMP NOPTI Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 RIP: 0010:tcp_ao_finish_connect (net/ipv4/tcp_ao.c:1182) Fixes: 7c2ffaf ("net/tcp: Calculate TCP-AO traffic keys") Signed-off-by: Anderson Nascimento <anderson@allelesecurity.com> Reviewed-by: Dmitry Safonov <0x7f454c46@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: NipaLocal <nipa@local>
…PAIR A NULL pointer dereference can occur in tcp_ao_finish_connect() during a connect() system call on a socket with a TCP-AO key added and TCP_REPAIR enabled. The function is called with skb being NULL and attempts to dereference it on tcp_hdr(skb)->seq without a prior skb validation. Fix this by checking if skb is NULL before dereferencing it. The commentary is taken from bpf_skops_established(), which is also called in the same flow. Unlike the function being patched, bpf_skops_established() validates the skb before dereferencing it. int main(void){ struct sockaddr_in sockaddr; struct tcp_ao_add tcp_ao; int sk; int one = 1; memset(&sockaddr,'\0',sizeof(sockaddr)); memset(&tcp_ao,'\0',sizeof(tcp_ao)); sk = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); sockaddr.sin_family = AF_INET; memcpy(tcp_ao.alg_name,"cmac(aes128)",12); memcpy(tcp_ao.key,"ABCDEFGHABCDEFGH",16); tcp_ao.keylen = 16; memcpy(&tcp_ao.addr,&sockaddr,sizeof(sockaddr)); setsockopt(sk, IPPROTO_TCP, TCP_AO_ADD_KEY, &tcp_ao, sizeof(tcp_ao)); setsockopt(sk, IPPROTO_TCP, TCP_REPAIR, &one, sizeof(one)); sockaddr.sin_family = AF_INET; sockaddr.sin_port = htobe16(123); inet_aton("127.0.0.1", &sockaddr.sin_addr); connect(sk,(struct sockaddr *)&sockaddr,sizeof(sockaddr)); return 0; } $ gcc tcp-ao-nullptr.c -o tcp-ao-nullptr -Wall $ unshare -Urn # ip addr add 127.0.0.1 dev lo # ./tcp-ao-nullptr BUG: kernel NULL pointer dereference, address: 00000000000000b6 PGD 1f648d067 P4D 1f648d067 PUD 1982e8067 PMD 0 Oops: Oops: 0000 [kernel-patches#1] SMP NOPTI Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 RIP: 0010:tcp_ao_finish_connect (net/ipv4/tcp_ao.c:1182) Fixes: 7c2ffaf ("net/tcp: Calculate TCP-AO traffic keys") Signed-off-by: Anderson Nascimento <anderson@allelesecurity.com> Reviewed-by: Dmitry Safonov <0x7f454c46@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: NipaLocal <nipa@local>
…PAIR A NULL pointer dereference can occur in tcp_ao_finish_connect() during a connect() system call on a socket with a TCP-AO key added and TCP_REPAIR enabled. The function is called with skb being NULL and attempts to dereference it on tcp_hdr(skb)->seq without a prior skb validation. Fix this by checking if skb is NULL before dereferencing it. The commentary is taken from bpf_skops_established(), which is also called in the same flow. Unlike the function being patched, bpf_skops_established() validates the skb before dereferencing it. int main(void){ struct sockaddr_in sockaddr; struct tcp_ao_add tcp_ao; int sk; int one = 1; memset(&sockaddr,'\0',sizeof(sockaddr)); memset(&tcp_ao,'\0',sizeof(tcp_ao)); sk = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); sockaddr.sin_family = AF_INET; memcpy(tcp_ao.alg_name,"cmac(aes128)",12); memcpy(tcp_ao.key,"ABCDEFGHABCDEFGH",16); tcp_ao.keylen = 16; memcpy(&tcp_ao.addr,&sockaddr,sizeof(sockaddr)); setsockopt(sk, IPPROTO_TCP, TCP_AO_ADD_KEY, &tcp_ao, sizeof(tcp_ao)); setsockopt(sk, IPPROTO_TCP, TCP_REPAIR, &one, sizeof(one)); sockaddr.sin_family = AF_INET; sockaddr.sin_port = htobe16(123); inet_aton("127.0.0.1", &sockaddr.sin_addr); connect(sk,(struct sockaddr *)&sockaddr,sizeof(sockaddr)); return 0; } $ gcc tcp-ao-nullptr.c -o tcp-ao-nullptr -Wall $ unshare -Urn # ip addr add 127.0.0.1 dev lo # ./tcp-ao-nullptr BUG: kernel NULL pointer dereference, address: 00000000000000b6 PGD 1f648d067 P4D 1f648d067 PUD 1982e8067 PMD 0 Oops: Oops: 0000 [kernel-patches#1] SMP NOPTI Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 RIP: 0010:tcp_ao_finish_connect (net/ipv4/tcp_ao.c:1182) Fixes: 7c2ffaf ("net/tcp: Calculate TCP-AO traffic keys") Signed-off-by: Anderson Nascimento <anderson@allelesecurity.com> Reviewed-by: Dmitry Safonov <0x7f454c46@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: NipaLocal <nipa@local>
…PAIR A NULL pointer dereference can occur in tcp_ao_finish_connect() during a connect() system call on a socket with a TCP-AO key added and TCP_REPAIR enabled. The function is called with skb being NULL and attempts to dereference it on tcp_hdr(skb)->seq without a prior skb validation. Fix this by checking if skb is NULL before dereferencing it. The commentary is taken from bpf_skops_established(), which is also called in the same flow. Unlike the function being patched, bpf_skops_established() validates the skb before dereferencing it. int main(void){ struct sockaddr_in sockaddr; struct tcp_ao_add tcp_ao; int sk; int one = 1; memset(&sockaddr,'\0',sizeof(sockaddr)); memset(&tcp_ao,'\0',sizeof(tcp_ao)); sk = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); sockaddr.sin_family = AF_INET; memcpy(tcp_ao.alg_name,"cmac(aes128)",12); memcpy(tcp_ao.key,"ABCDEFGHABCDEFGH",16); tcp_ao.keylen = 16; memcpy(&tcp_ao.addr,&sockaddr,sizeof(sockaddr)); setsockopt(sk, IPPROTO_TCP, TCP_AO_ADD_KEY, &tcp_ao, sizeof(tcp_ao)); setsockopt(sk, IPPROTO_TCP, TCP_REPAIR, &one, sizeof(one)); sockaddr.sin_family = AF_INET; sockaddr.sin_port = htobe16(123); inet_aton("127.0.0.1", &sockaddr.sin_addr); connect(sk,(struct sockaddr *)&sockaddr,sizeof(sockaddr)); return 0; } $ gcc tcp-ao-nullptr.c -o tcp-ao-nullptr -Wall $ unshare -Urn # ip addr add 127.0.0.1 dev lo # ./tcp-ao-nullptr BUG: kernel NULL pointer dereference, address: 00000000000000b6 PGD 1f648d067 P4D 1f648d067 PUD 1982e8067 PMD 0 Oops: Oops: 0000 [kernel-patches#1] SMP NOPTI Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 RIP: 0010:tcp_ao_finish_connect (net/ipv4/tcp_ao.c:1182) Fixes: 7c2ffaf ("net/tcp: Calculate TCP-AO traffic keys") Signed-off-by: Anderson Nascimento <anderson@allelesecurity.com> Reviewed-by: Dmitry Safonov <0x7f454c46@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: NipaLocal <nipa@local>
…PAIR A NULL pointer dereference can occur in tcp_ao_finish_connect() during a connect() system call on a socket with a TCP-AO key added and TCP_REPAIR enabled. The function is called with skb being NULL and attempts to dereference it on tcp_hdr(skb)->seq without a prior skb validation. Fix this by checking if skb is NULL before dereferencing it. The commentary is taken from bpf_skops_established(), which is also called in the same flow. Unlike the function being patched, bpf_skops_established() validates the skb before dereferencing it. int main(void){ struct sockaddr_in sockaddr; struct tcp_ao_add tcp_ao; int sk; int one = 1; memset(&sockaddr,'\0',sizeof(sockaddr)); memset(&tcp_ao,'\0',sizeof(tcp_ao)); sk = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); sockaddr.sin_family = AF_INET; memcpy(tcp_ao.alg_name,"cmac(aes128)",12); memcpy(tcp_ao.key,"ABCDEFGHABCDEFGH",16); tcp_ao.keylen = 16; memcpy(&tcp_ao.addr,&sockaddr,sizeof(sockaddr)); setsockopt(sk, IPPROTO_TCP, TCP_AO_ADD_KEY, &tcp_ao, sizeof(tcp_ao)); setsockopt(sk, IPPROTO_TCP, TCP_REPAIR, &one, sizeof(one)); sockaddr.sin_family = AF_INET; sockaddr.sin_port = htobe16(123); inet_aton("127.0.0.1", &sockaddr.sin_addr); connect(sk,(struct sockaddr *)&sockaddr,sizeof(sockaddr)); return 0; } $ gcc tcp-ao-nullptr.c -o tcp-ao-nullptr -Wall $ unshare -Urn # ip addr add 127.0.0.1 dev lo # ./tcp-ao-nullptr BUG: kernel NULL pointer dereference, address: 00000000000000b6 PGD 1f648d067 P4D 1f648d067 PUD 1982e8067 PMD 0 Oops: Oops: 0000 [kernel-patches#1] SMP NOPTI Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 RIP: 0010:tcp_ao_finish_connect (net/ipv4/tcp_ao.c:1182) Fixes: 7c2ffaf ("net/tcp: Calculate TCP-AO traffic keys") Signed-off-by: Anderson Nascimento <anderson@allelesecurity.com> Reviewed-by: Dmitry Safonov <0x7f454c46@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: NipaLocal <nipa@local>
…PAIR A NULL pointer dereference can occur in tcp_ao_finish_connect() during a connect() system call on a socket with a TCP-AO key added and TCP_REPAIR enabled. The function is called with skb being NULL and attempts to dereference it on tcp_hdr(skb)->seq without a prior skb validation. Fix this by checking if skb is NULL before dereferencing it. The commentary is taken from bpf_skops_established(), which is also called in the same flow. Unlike the function being patched, bpf_skops_established() validates the skb before dereferencing it. int main(void){ struct sockaddr_in sockaddr; struct tcp_ao_add tcp_ao; int sk; int one = 1; memset(&sockaddr,'\0',sizeof(sockaddr)); memset(&tcp_ao,'\0',sizeof(tcp_ao)); sk = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); sockaddr.sin_family = AF_INET; memcpy(tcp_ao.alg_name,"cmac(aes128)",12); memcpy(tcp_ao.key,"ABCDEFGHABCDEFGH",16); tcp_ao.keylen = 16; memcpy(&tcp_ao.addr,&sockaddr,sizeof(sockaddr)); setsockopt(sk, IPPROTO_TCP, TCP_AO_ADD_KEY, &tcp_ao, sizeof(tcp_ao)); setsockopt(sk, IPPROTO_TCP, TCP_REPAIR, &one, sizeof(one)); sockaddr.sin_family = AF_INET; sockaddr.sin_port = htobe16(123); inet_aton("127.0.0.1", &sockaddr.sin_addr); connect(sk,(struct sockaddr *)&sockaddr,sizeof(sockaddr)); return 0; } $ gcc tcp-ao-nullptr.c -o tcp-ao-nullptr -Wall $ unshare -Urn BUG: kernel NULL pointer dereference, address: 00000000000000b6 PGD 1f648d067 P4D 1f648d067 PUD 1982e8067 PMD 0 Oops: Oops: 0000 [kernel-patches#1] SMP NOPTI Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 RIP: 0010:tcp_ao_finish_connect (net/ipv4/tcp_ao.c:1182) Fixes: 7c2ffaf ("net/tcp: Calculate TCP-AO traffic keys") Signed-off-by: Anderson Nascimento <anderson@allelesecurity.com> Reviewed-by: Dmitry Safonov <0x7f454c46@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://patch.msgid.link/20250911230743.2551-3-anderson@allelesecurity.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The ns_bpf_qdisc selftest triggers a kernel panic: Unable to handle kernel paging request at virtual address ffffffffa38dbf58 Current test_progs pgtable: 4K pagesize, 57-bit VAs, pgdp=0x00000001109cc000 [ffffffffa38dbf58] pgd=000000011fffd801, p4d=000000011fffd401, pud=000000011fffd001, pmd=0000000000000000 Oops [#1] Modules linked in: bpf_testmod(OE) xt_conntrack nls_iso8859_1 [...] [last unloaded: bpf_testmod(OE)] CPU: 1 UID: 0 PID: 23584 Comm: test_progs Tainted: G W OE 6.17.0-rc1-g2465bb83e0b4 #1 NONE Tainted: [W]=WARN, [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: Unknown Unknown Product/Unknown Product, BIOS 2024.01+dfsg-1ubuntu5.1 01/01/2024 epc : __qdisc_run+0x82/0x6f0 ra : __qdisc_run+0x6e/0x6f0 epc : ffffffff80bd5c7a ra : ffffffff80bd5c66 sp : ff2000000eecb550 gp : ffffffff82472098 tp : ff60000096895940 t0 : ffffffff8001f180 t1 : ffffffff801e1664 t2 : 0000000000000000 s0 : ff2000000eecb5d0 s1 : ff60000093a6a600 a0 : ffffffffa38dbee8 a1 : 0000000000000001 a2 : ff2000000eecb510 a3 : 0000000000000001 a4 : 0000000000000000 a5 : 0000000000000010 a6 : 0000000000000000 a7 : 0000000000735049 s2 : ffffffffa38dbee8 s3 : 0000000000000040 s4 : ff6000008bcda000 s5 : 0000000000000008 s6 : ff60000093a6a680 s7 : ff60000093a6a6f0 s8 : ff60000093a6a6ac s9 : ff60000093140000 s10: 0000000000000000 s11: ff2000000eecb9d0 t3 : 0000000000000000 t4 : 0000000000ff0000 t5 : 0000000000000000 t6 : ff60000093a6a8b6 status: 0000000200000120 badaddr: ffffffffa38dbf58 cause: 000000000000000d [<ffffffff80bd5c7a>] __qdisc_run+0x82/0x6f0 [<ffffffff80b6fe58>] __dev_queue_xmit+0x4c0/0x1128 [<ffffffff80b80ae0>] neigh_resolve_output+0xd0/0x170 [<ffffffff80d2daf6>] ip6_finish_output2+0x226/0x6c8 [<ffffffff80d31254>] ip6_finish_output+0x10c/0x2a0 [<ffffffff80d31446>] ip6_output+0x5e/0x178 [<ffffffff80d2e232>] ip6_xmit+0x29a/0x608 [<ffffffff80d6f4c6>] inet6_csk_xmit+0xe6/0x140 [<ffffffff80c985e4>] __tcp_transmit_skb+0x45c/0xaa8 [<ffffffff80c995fe>] tcp_connect+0x9ce/0xd10 [<ffffffff80d66524>] tcp_v6_connect+0x4ac/0x5e8 [<ffffffff80cc19b8>] __inet_stream_connect+0xd8/0x318 [<ffffffff80cc1c36>] inet_stream_connect+0x3e/0x68 [<ffffffff80b42b20>] __sys_connect_file+0x50/0x88 [<ffffffff80b42bee>] __sys_connect+0x96/0xc8 [<ffffffff80b42c40>] __riscv_sys_connect+0x20/0x30 [<ffffffff80e5bcae>] do_trap_ecall_u+0x256/0x378 [<ffffffff80e69af2>] handle_exception+0x14a/0x156 Code: 892a 0363 1205 489c 8bc1 c7e5 2d03 084a 2703 080a (2783) 0709 ---[ end trace 0000000000000000 ]--- The bpf_fifo_dequeue prog returns a skb which is a pointer. The pointer is treated as a 32bit value and sign extend to 64bit in epilogue. This behavior is right for most bpf prog types but wrong for struct ops which requires RISC-V ABI. So let's sign extend struct ops return values according to the function model and RISC-V ABI([0]). [0]: https://riscv.org/wp-content/uploads/2024/12/riscv-calling.pdf Fixes: 25ad106 ("riscv, bpf: Adapt bpf trampoline to optimized riscv ftrace framework") Signed-off-by: Hengqi Chen <hengqi.chen@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: Pu Lehui <pulehui@huawei.com> Reviewed-by: Pu Lehui <pulehui@huawei.com> Link: https://lore.kernel.org/bpf/20250908012448.1695-1-hengqi.chen@gmail.com
Write combining is an optimization feature in CPUs that is frequently used by modern devices to generate 32 or 64 byte TLPs at the PCIe level. These large TLPs allow certain optimizations in the driver to HW communication that improve performance. As WC is unpredictable and optional the HW designs all tolerate cases where combining doesn't happen and simply experience a performance degradation. Unfortunately many virtualization environments on all architectures have done things that completely disable WC inside the VM with no generic way to detect this. For example WC was fully blocked in ARM64 KVM until commit 8c47ce3 ("KVM: arm64: Set io memory s2 pte as normalnc for vfio pci device"). Trying to use WC when it is known not to work has a measurable performance cost (~5%). Long ago mlx5 developed an boot time algorithm to test if WC is available or not by using unique mlx5 HW features to measure how many large TLPs the device is receiving. The SW generates a large number of combining opportunities and if any succeed then WC is declared working. In mlx5 the WC optimization feature is never used by the kernel except for the boot time test. The WC is only used by userspace in rdma-core. Sadly modern ARM CPUs, especially NVIDIA Grace, have a combining implementation that is very unreliable compared to pretty much everything prior. This is being fixed architecturally in new CPUs with a new ST64B instruction, but current shipping devices suffer this problem. Unreliable means the SW can present thousands of combining opportunities and the HW will not combine for any of them, which creates a performance degradation, and critically fails the mlx5 boot test. However, the CPU is very sensitive to the instruction sequence used, with the better options being sufficiently good that the performance loss from the unreliable CPU is not measurable. Broadly there are several options, from worst to best: 1) A C loop doing a u64 memcpy. This was used prior to commit ef30228 ("IB/mlx5: Use __iowrite64_copy() for write combining stores") and failed almost all the time on Grace CPUs. 2) ARM64 assembly with consecutive 8 byte stores. This was implemented as an arch-generic __iowriteXX_copy() family of functions suitable for performance use in drivers for WC. commit ead7911 ("arm64/io: Provide a WC friendly __iowriteXX_copy()") provided the ARM implementation. 3) ARM64 assembly with consecutive 16 byte stores. This was rejected from kernel use over fears of virtualization failures. Common ARM VMMs will crash if STP is used against emulated memory. 4) A single NEON store instruction. Userspace has used this option for a very long time, it performs well. 5) For future silicon the new ST64B instruction is guaranteed to generate a 64 byte TLP 100% of the time The past upgrade from kernel-patches#1 to kernel-patches#2 was thought to be sufficient to solve this problem. However, more testing on more systems shows that kernel-patches#3 is still problematic at a low frequency and the kernel test fails. Thus, make the mlx5 use the same instructions as userspace during the boot time WC self test. This way the WC test matches the userspace and will properly detect the ability of HW to support the WC workload that userspace will generate. While kernel-patches#4 still has imperfect combining performance, it is substantially better than kernel-patches#2, and does actually give a performance win to applications. Self-test failures with kernel-patches#2 are like 3/10 boots, on some systems, kernel-patches#4 has never seen a boot failure. There is no real general use case for a NEON based WC flow in the kernel. This is not suitable for any performance path work as getting into/out of a NEON context is fairly expensive compared to the gain of WC. Future CPUs are going to fix this issue by using an new ARM instruction and __iowriteXX_copy() will be updated to use that automatically, probably using the ALTERNATES mechanism. Since this problem is constrained to mlx5's unique situation of needing a non-performance code path to duplicate what mlx5 userspace is doing as a matter of self-testing, implement it as a one line inline assembly in the driver directly. Lastly, this was concluded from the discussion with ARM maintainers which confirms that this is the best approach for the solution: https://lore.kernel.org/r/aHqN_hpJl84T1Usi@arm.com Signed-off-by: Patrisious Haddad <phaddad@nvidia.com> Reviewed-by: Michael Guralnik <michaelgur@nvidia.com> Reviewed-by: Moshe Shemesh <moshe@nvidia.com> Signed-off-by: Tariq Toukan <tariqt@nvidia.com> Signed-off-by: NipaLocal <nipa@local>
Write combining is an optimization feature in CPUs that is frequently used by modern devices to generate 32 or 64 byte TLPs at the PCIe level. These large TLPs allow certain optimizations in the driver to HW communication that improve performance. As WC is unpredictable and optional the HW designs all tolerate cases where combining doesn't happen and simply experience a performance degradation. Unfortunately many virtualization environments on all architectures have done things that completely disable WC inside the VM with no generic way to detect this. For example WC was fully blocked in ARM64 KVM until commit 8c47ce3 ("KVM: arm64: Set io memory s2 pte as normalnc for vfio pci device"). Trying to use WC when it is known not to work has a measurable performance cost (~5%). Long ago mlx5 developed an boot time algorithm to test if WC is available or not by using unique mlx5 HW features to measure how many large TLPs the device is receiving. The SW generates a large number of combining opportunities and if any succeed then WC is declared working. In mlx5 the WC optimization feature is never used by the kernel except for the boot time test. The WC is only used by userspace in rdma-core. Sadly modern ARM CPUs, especially NVIDIA Grace, have a combining implementation that is very unreliable compared to pretty much everything prior. This is being fixed architecturally in new CPUs with a new ST64B instruction, but current shipping devices suffer this problem. Unreliable means the SW can present thousands of combining opportunities and the HW will not combine for any of them, which creates a performance degradation, and critically fails the mlx5 boot test. However, the CPU is very sensitive to the instruction sequence used, with the better options being sufficiently good that the performance loss from the unreliable CPU is not measurable. Broadly there are several options, from worst to best: 1) A C loop doing a u64 memcpy. This was used prior to commit ef30228 ("IB/mlx5: Use __iowrite64_copy() for write combining stores") and failed almost all the time on Grace CPUs. 2) ARM64 assembly with consecutive 8 byte stores. This was implemented as an arch-generic __iowriteXX_copy() family of functions suitable for performance use in drivers for WC. commit ead7911 ("arm64/io: Provide a WC friendly __iowriteXX_copy()") provided the ARM implementation. 3) ARM64 assembly with consecutive 16 byte stores. This was rejected from kernel use over fears of virtualization failures. Common ARM VMMs will crash if STP is used against emulated memory. 4) A single NEON store instruction. Userspace has used this option for a very long time, it performs well. 5) For future silicon the new ST64B instruction is guaranteed to generate a 64 byte TLP 100% of the time The past upgrade from kernel-patches#1 to kernel-patches#2 was thought to be sufficient to solve this problem. However, more testing on more systems shows that kernel-patches#3 is still problematic at a low frequency and the kernel test fails. Thus, make the mlx5 use the same instructions as userspace during the boot time WC self test. This way the WC test matches the userspace and will properly detect the ability of HW to support the WC workload that userspace will generate. While kernel-patches#4 still has imperfect combining performance, it is substantially better than kernel-patches#2, and does actually give a performance win to applications. Self-test failures with kernel-patches#2 are like 3/10 boots, on some systems, kernel-patches#4 has never seen a boot failure. There is no real general use case for a NEON based WC flow in the kernel. This is not suitable for any performance path work as getting into/out of a NEON context is fairly expensive compared to the gain of WC. Future CPUs are going to fix this issue by using an new ARM instruction and __iowriteXX_copy() will be updated to use that automatically, probably using the ALTERNATES mechanism. Since this problem is constrained to mlx5's unique situation of needing a non-performance code path to duplicate what mlx5 userspace is doing as a matter of self-testing, implement it as a one line inline assembly in the driver directly. Lastly, this was concluded from the discussion with ARM maintainers which confirms that this is the best approach for the solution: https://lore.kernel.org/r/aHqN_hpJl84T1Usi@arm.com Signed-off-by: Patrisious Haddad <phaddad@nvidia.com> Reviewed-by: Michael Guralnik <michaelgur@nvidia.com> Reviewed-by: Moshe Shemesh <moshe@nvidia.com> Signed-off-by: Tariq Toukan <tariqt@nvidia.com> Signed-off-by: NipaLocal <nipa@local>
Write combining is an optimization feature in CPUs that is frequently used by modern devices to generate 32 or 64 byte TLPs at the PCIe level. These large TLPs allow certain optimizations in the driver to HW communication that improve performance. As WC is unpredictable and optional the HW designs all tolerate cases where combining doesn't happen and simply experience a performance degradation. Unfortunately many virtualization environments on all architectures have done things that completely disable WC inside the VM with no generic way to detect this. For example WC was fully blocked in ARM64 KVM until commit 8c47ce3 ("KVM: arm64: Set io memory s2 pte as normalnc for vfio pci device"). Trying to use WC when it is known not to work has a measurable performance cost (~5%). Long ago mlx5 developed an boot time algorithm to test if WC is available or not by using unique mlx5 HW features to measure how many large TLPs the device is receiving. The SW generates a large number of combining opportunities and if any succeed then WC is declared working. In mlx5 the WC optimization feature is never used by the kernel except for the boot time test. The WC is only used by userspace in rdma-core. Sadly modern ARM CPUs, especially NVIDIA Grace, have a combining implementation that is very unreliable compared to pretty much everything prior. This is being fixed architecturally in new CPUs with a new ST64B instruction, but current shipping devices suffer this problem. Unreliable means the SW can present thousands of combining opportunities and the HW will not combine for any of them, which creates a performance degradation, and critically fails the mlx5 boot test. However, the CPU is very sensitive to the instruction sequence used, with the better options being sufficiently good that the performance loss from the unreliable CPU is not measurable. Broadly there are several options, from worst to best: 1) A C loop doing a u64 memcpy. This was used prior to commit ef30228 ("IB/mlx5: Use __iowrite64_copy() for write combining stores") and failed almost all the time on Grace CPUs. 2) ARM64 assembly with consecutive 8 byte stores. This was implemented as an arch-generic __iowriteXX_copy() family of functions suitable for performance use in drivers for WC. commit ead7911 ("arm64/io: Provide a WC friendly __iowriteXX_copy()") provided the ARM implementation. 3) ARM64 assembly with consecutive 16 byte stores. This was rejected from kernel use over fears of virtualization failures. Common ARM VMMs will crash if STP is used against emulated memory. 4) A single NEON store instruction. Userspace has used this option for a very long time, it performs well. 5) For future silicon the new ST64B instruction is guaranteed to generate a 64 byte TLP 100% of the time The past upgrade from kernel-patches#1 to kernel-patches#2 was thought to be sufficient to solve this problem. However, more testing on more systems shows that kernel-patches#3 is still problematic at a low frequency and the kernel test fails. Thus, make the mlx5 use the same instructions as userspace during the boot time WC self test. This way the WC test matches the userspace and will properly detect the ability of HW to support the WC workload that userspace will generate. While kernel-patches#4 still has imperfect combining performance, it is substantially better than kernel-patches#2, and does actually give a performance win to applications. Self-test failures with kernel-patches#2 are like 3/10 boots, on some systems, kernel-patches#4 has never seen a boot failure. There is no real general use case for a NEON based WC flow in the kernel. This is not suitable for any performance path work as getting into/out of a NEON context is fairly expensive compared to the gain of WC. Future CPUs are going to fix this issue by using an new ARM instruction and __iowriteXX_copy() will be updated to use that automatically, probably using the ALTERNATES mechanism. Since this problem is constrained to mlx5's unique situation of needing a non-performance code path to duplicate what mlx5 userspace is doing as a matter of self-testing, implement it as a one line inline assembly in the driver directly. Lastly, this was concluded from the discussion with ARM maintainers which confirms that this is the best approach for the solution: https://lore.kernel.org/r/aHqN_hpJl84T1Usi@arm.com Signed-off-by: Patrisious Haddad <phaddad@nvidia.com> Reviewed-by: Michael Guralnik <michaelgur@nvidia.com> Reviewed-by: Moshe Shemesh <moshe@nvidia.com> Signed-off-by: Tariq Toukan <tariqt@nvidia.com> Signed-off-by: NipaLocal <nipa@local>
Write combining is an optimization feature in CPUs that is frequently used by modern devices to generate 32 or 64 byte TLPs at the PCIe level. These large TLPs allow certain optimizations in the driver to HW communication that improve performance. As WC is unpredictable and optional the HW designs all tolerate cases where combining doesn't happen and simply experience a performance degradation. Unfortunately many virtualization environments on all architectures have done things that completely disable WC inside the VM with no generic way to detect this. For example WC was fully blocked in ARM64 KVM until commit 8c47ce3 ("KVM: arm64: Set io memory s2 pte as normalnc for vfio pci device"). Trying to use WC when it is known not to work has a measurable performance cost (~5%). Long ago mlx5 developed an boot time algorithm to test if WC is available or not by using unique mlx5 HW features to measure how many large TLPs the device is receiving. The SW generates a large number of combining opportunities and if any succeed then WC is declared working. In mlx5 the WC optimization feature is never used by the kernel except for the boot time test. The WC is only used by userspace in rdma-core. Sadly modern ARM CPUs, especially NVIDIA Grace, have a combining implementation that is very unreliable compared to pretty much everything prior. This is being fixed architecturally in new CPUs with a new ST64B instruction, but current shipping devices suffer this problem. Unreliable means the SW can present thousands of combining opportunities and the HW will not combine for any of them, which creates a performance degradation, and critically fails the mlx5 boot test. However, the CPU is very sensitive to the instruction sequence used, with the better options being sufficiently good that the performance loss from the unreliable CPU is not measurable. Broadly there are several options, from worst to best: 1) A C loop doing a u64 memcpy. This was used prior to commit ef30228 ("IB/mlx5: Use __iowrite64_copy() for write combining stores") and failed almost all the time on Grace CPUs. 2) ARM64 assembly with consecutive 8 byte stores. This was implemented as an arch-generic __iowriteXX_copy() family of functions suitable for performance use in drivers for WC. commit ead7911 ("arm64/io: Provide a WC friendly __iowriteXX_copy()") provided the ARM implementation. 3) ARM64 assembly with consecutive 16 byte stores. This was rejected from kernel use over fears of virtualization failures. Common ARM VMMs will crash if STP is used against emulated memory. 4) A single NEON store instruction. Userspace has used this option for a very long time, it performs well. 5) For future silicon the new ST64B instruction is guaranteed to generate a 64 byte TLP 100% of the time The past upgrade from kernel-patches#1 to kernel-patches#2 was thought to be sufficient to solve this problem. However, more testing on more systems shows that kernel-patches#3 is still problematic at a low frequency and the kernel test fails. Thus, make the mlx5 use the same instructions as userspace during the boot time WC self test. This way the WC test matches the userspace and will properly detect the ability of HW to support the WC workload that userspace will generate. While kernel-patches#4 still has imperfect combining performance, it is substantially better than kernel-patches#2, and does actually give a performance win to applications. Self-test failures with kernel-patches#2 are like 3/10 boots, on some systems, kernel-patches#4 has never seen a boot failure. There is no real general use case for a NEON based WC flow in the kernel. This is not suitable for any performance path work as getting into/out of a NEON context is fairly expensive compared to the gain of WC. Future CPUs are going to fix this issue by using an new ARM instruction and __iowriteXX_copy() will be updated to use that automatically, probably using the ALTERNATES mechanism. Since this problem is constrained to mlx5's unique situation of needing a non-performance code path to duplicate what mlx5 userspace is doing as a matter of self-testing, implement it as a one line inline assembly in the driver directly. Lastly, this was concluded from the discussion with ARM maintainers which confirms that this is the best approach for the solution: https://lore.kernel.org/r/aHqN_hpJl84T1Usi@arm.com Signed-off-by: Patrisious Haddad <phaddad@nvidia.com> Reviewed-by: Michael Guralnik <michaelgur@nvidia.com> Reviewed-by: Moshe Shemesh <moshe@nvidia.com> Signed-off-by: Tariq Toukan <tariqt@nvidia.com> Signed-off-by: NipaLocal <nipa@local>
When igc_led_setup() fails, igc_probe() fails and triggers kernel panic in free_netdev() since unregister_netdev() is not called. [1] This behavior can be tested using fault-injection framework, especially the failslab feature. [2] Since LED support is not mandatory, treat LED setup failures as non-fatal and continue probe with a warning message, consequently avoiding the kernel panic. [1] kernel BUG at net/core/dev.c:12047! Oops: invalid opcode: 0000 [kernel-patches#1] SMP NOPTI CPU: 0 UID: 0 PID: 937 Comm: repro-igc-led-e Not tainted 6.17.0-rc4-enjuk-tnguy-00865-gc4940196ab02 kernel-patches#64 PREEMPT(voluntary) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:free_netdev+0x278/0x2b0 [...] Call Trace: <TASK> igc_probe+0x370/0x910 local_pci_probe+0x3a/0x80 pci_device_probe+0xd1/0x200 [...] [2] #!/bin/bash -ex FAILSLAB_PATH=/sys/kernel/debug/failslab/ DEVICE=0000:00:05.0 START_ADDR=$(grep " igc_led_setup" /proc/kallsyms \ | awk '{printf("0x%s", $1)}') END_ADDR=$(printf "0x%x" $((START_ADDR + 0x100))) echo $START_ADDR > $FAILSLAB_PATH/require-start echo $END_ADDR > $FAILSLAB_PATH/require-end echo 1 > $FAILSLAB_PATH/times echo 100 > $FAILSLAB_PATH/probability echo N > $FAILSLAB_PATH/ignore-gfp-wait echo $DEVICE > /sys/bus/pci/drivers/igc/bind Fixes: ea57870 ("igc: Add support for LEDs on i225/i226") Signed-off-by: Kohei Enju <enjuk@amazon.com> Reviewed-by: Paul Menzel <pmenzel@molgen.mpg.de> Reviewed-by: Aleksandr Loktionov <aleksandr.loktionov@intel.com> Reviewed-by: Vitaly Lifshits <vitaly.lifshits@intel.com> Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> Tested-by: Mor Bar-Gabay <morx.bar.gabay@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Signed-off-by: NipaLocal <nipa@local>
When igc_led_setup() fails, igc_probe() fails and triggers kernel panic in free_netdev() since unregister_netdev() is not called. [1] This behavior can be tested using fault-injection framework, especially the failslab feature. [2] Since LED support is not mandatory, treat LED setup failures as non-fatal and continue probe with a warning message, consequently avoiding the kernel panic. [1] kernel BUG at net/core/dev.c:12047! Oops: invalid opcode: 0000 [kernel-patches#1] SMP NOPTI CPU: 0 UID: 0 PID: 937 Comm: repro-igc-led-e Not tainted 6.17.0-rc4-enjuk-tnguy-00865-gc4940196ab02 kernel-patches#64 PREEMPT(voluntary) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:free_netdev+0x278/0x2b0 [...] Call Trace: <TASK> igc_probe+0x370/0x910 local_pci_probe+0x3a/0x80 pci_device_probe+0xd1/0x200 [...] [2] #!/bin/bash -ex FAILSLAB_PATH=/sys/kernel/debug/failslab/ DEVICE=0000:00:05.0 START_ADDR=$(grep " igc_led_setup" /proc/kallsyms \ | awk '{printf("0x%s", $1)}') END_ADDR=$(printf "0x%x" $((START_ADDR + 0x100))) echo $START_ADDR > $FAILSLAB_PATH/require-start echo $END_ADDR > $FAILSLAB_PATH/require-end echo 1 > $FAILSLAB_PATH/times echo 100 > $FAILSLAB_PATH/probability echo N > $FAILSLAB_PATH/ignore-gfp-wait echo $DEVICE > /sys/bus/pci/drivers/igc/bind Fixes: ea57870 ("igc: Add support for LEDs on i225/i226") Signed-off-by: Kohei Enju <enjuk@amazon.com> Reviewed-by: Paul Menzel <pmenzel@molgen.mpg.de> Reviewed-by: Aleksandr Loktionov <aleksandr.loktionov@intel.com> Reviewed-by: Vitaly Lifshits <vitaly.lifshits@intel.com> Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> Tested-by: Mor Bar-Gabay <morx.bar.gabay@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Signed-off-by: NipaLocal <nipa@local>
When igc_led_setup() fails, igc_probe() fails and triggers kernel panic in free_netdev() since unregister_netdev() is not called. [1] This behavior can be tested using fault-injection framework, especially the failslab feature. [2] Since LED support is not mandatory, treat LED setup failures as non-fatal and continue probe with a warning message, consequently avoiding the kernel panic. [1] kernel BUG at net/core/dev.c:12047! Oops: invalid opcode: 0000 [kernel-patches#1] SMP NOPTI CPU: 0 UID: 0 PID: 937 Comm: repro-igc-led-e Not tainted 6.17.0-rc4-enjuk-tnguy-00865-gc4940196ab02 kernel-patches#64 PREEMPT(voluntary) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:free_netdev+0x278/0x2b0 [...] Call Trace: <TASK> igc_probe+0x370/0x910 local_pci_probe+0x3a/0x80 pci_device_probe+0xd1/0x200 [...] [2] #!/bin/bash -ex FAILSLAB_PATH=/sys/kernel/debug/failslab/ DEVICE=0000:00:05.0 START_ADDR=$(grep " igc_led_setup" /proc/kallsyms \ | awk '{printf("0x%s", $1)}') END_ADDR=$(printf "0x%x" $((START_ADDR + 0x100))) echo $START_ADDR > $FAILSLAB_PATH/require-start echo $END_ADDR > $FAILSLAB_PATH/require-end echo 1 > $FAILSLAB_PATH/times echo 100 > $FAILSLAB_PATH/probability echo N > $FAILSLAB_PATH/ignore-gfp-wait echo $DEVICE > /sys/bus/pci/drivers/igc/bind Fixes: ea57870 ("igc: Add support for LEDs on i225/i226") Signed-off-by: Kohei Enju <enjuk@amazon.com> Reviewed-by: Paul Menzel <pmenzel@molgen.mpg.de> Reviewed-by: Aleksandr Loktionov <aleksandr.loktionov@intel.com> Reviewed-by: Vitaly Lifshits <vitaly.lifshits@intel.com> Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> Tested-by: Mor Bar-Gabay <morx.bar.gabay@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Signed-off-by: NipaLocal <nipa@local>
When igc_led_setup() fails, igc_probe() fails and triggers kernel panic in free_netdev() since unregister_netdev() is not called. [1] This behavior can be tested using fault-injection framework, especially the failslab feature. [2] Since LED support is not mandatory, treat LED setup failures as non-fatal and continue probe with a warning message, consequently avoiding the kernel panic. [1] kernel BUG at net/core/dev.c:12047! Oops: invalid opcode: 0000 [kernel-patches#1] SMP NOPTI CPU: 0 UID: 0 PID: 937 Comm: repro-igc-led-e Not tainted 6.17.0-rc4-enjuk-tnguy-00865-gc4940196ab02 kernel-patches#64 PREEMPT(voluntary) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:free_netdev+0x278/0x2b0 [...] Call Trace: <TASK> igc_probe+0x370/0x910 local_pci_probe+0x3a/0x80 pci_device_probe+0xd1/0x200 [...] [2] #!/bin/bash -ex FAILSLAB_PATH=/sys/kernel/debug/failslab/ DEVICE=0000:00:05.0 START_ADDR=$(grep " igc_led_setup" /proc/kallsyms \ | awk '{printf("0x%s", $1)}') END_ADDR=$(printf "0x%x" $((START_ADDR + 0x100))) echo $START_ADDR > $FAILSLAB_PATH/require-start echo $END_ADDR > $FAILSLAB_PATH/require-end echo 1 > $FAILSLAB_PATH/times echo 100 > $FAILSLAB_PATH/probability echo N > $FAILSLAB_PATH/ignore-gfp-wait echo $DEVICE > /sys/bus/pci/drivers/igc/bind Fixes: ea57870 ("igc: Add support for LEDs on i225/i226") Signed-off-by: Kohei Enju <enjuk@amazon.com> Reviewed-by: Paul Menzel <pmenzel@molgen.mpg.de> Reviewed-by: Aleksandr Loktionov <aleksandr.loktionov@intel.com> Reviewed-by: Vitaly Lifshits <vitaly.lifshits@intel.com> Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> Tested-by: Mor Bar-Gabay <morx.bar.gabay@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Signed-off-by: NipaLocal <nipa@local>
When igc_led_setup() fails, igc_probe() fails and triggers kernel panic in free_netdev() since unregister_netdev() is not called. [1] This behavior can be tested using fault-injection framework, especially the failslab feature. [2] Since LED support is not mandatory, treat LED setup failures as non-fatal and continue probe with a warning message, consequently avoiding the kernel panic. [1] kernel BUG at net/core/dev.c:12047! Oops: invalid opcode: 0000 [kernel-patches#1] SMP NOPTI CPU: 0 UID: 0 PID: 937 Comm: repro-igc-led-e Not tainted 6.17.0-rc4-enjuk-tnguy-00865-gc4940196ab02 kernel-patches#64 PREEMPT(voluntary) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:free_netdev+0x278/0x2b0 [...] Call Trace: <TASK> igc_probe+0x370/0x910 local_pci_probe+0x3a/0x80 pci_device_probe+0xd1/0x200 [...] [2] #!/bin/bash -ex FAILSLAB_PATH=/sys/kernel/debug/failslab/ DEVICE=0000:00:05.0 START_ADDR=$(grep " igc_led_setup" /proc/kallsyms \ | awk '{printf("0x%s", $1)}') END_ADDR=$(printf "0x%x" $((START_ADDR + 0x100))) echo $START_ADDR > $FAILSLAB_PATH/require-start echo $END_ADDR > $FAILSLAB_PATH/require-end echo 1 > $FAILSLAB_PATH/times echo 100 > $FAILSLAB_PATH/probability echo N > $FAILSLAB_PATH/ignore-gfp-wait echo $DEVICE > /sys/bus/pci/drivers/igc/bind Fixes: ea57870 ("igc: Add support for LEDs on i225/i226") Signed-off-by: Kohei Enju <enjuk@amazon.com> Reviewed-by: Paul Menzel <pmenzel@molgen.mpg.de> Reviewed-by: Aleksandr Loktionov <aleksandr.loktionov@intel.com> Reviewed-by: Vitaly Lifshits <vitaly.lifshits@intel.com> Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> Tested-by: Mor Bar-Gabay <morx.bar.gabay@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Signed-off-by: NipaLocal <nipa@local>
When igc_led_setup() fails, igc_probe() fails and triggers kernel panic in free_netdev() since unregister_netdev() is not called. [1] This behavior can be tested using fault-injection framework, especially the failslab feature. [2] Since LED support is not mandatory, treat LED setup failures as non-fatal and continue probe with a warning message, consequently avoiding the kernel panic. [1] kernel BUG at net/core/dev.c:12047! Oops: invalid opcode: 0000 [kernel-patches#1] SMP NOPTI CPU: 0 UID: 0 PID: 937 Comm: repro-igc-led-e Not tainted 6.17.0-rc4-enjuk-tnguy-00865-gc4940196ab02 kernel-patches#64 PREEMPT(voluntary) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:free_netdev+0x278/0x2b0 [...] Call Trace: <TASK> igc_probe+0x370/0x910 local_pci_probe+0x3a/0x80 pci_device_probe+0xd1/0x200 [...] [2] #!/bin/bash -ex FAILSLAB_PATH=/sys/kernel/debug/failslab/ DEVICE=0000:00:05.0 START_ADDR=$(grep " igc_led_setup" /proc/kallsyms \ | awk '{printf("0x%s", $1)}') END_ADDR=$(printf "0x%x" $((START_ADDR + 0x100))) echo $START_ADDR > $FAILSLAB_PATH/require-start echo $END_ADDR > $FAILSLAB_PATH/require-end echo 1 > $FAILSLAB_PATH/times echo 100 > $FAILSLAB_PATH/probability echo N > $FAILSLAB_PATH/ignore-gfp-wait echo $DEVICE > /sys/bus/pci/drivers/igc/bind Fixes: ea57870 ("igc: Add support for LEDs on i225/i226") Signed-off-by: Kohei Enju <enjuk@amazon.com> Reviewed-by: Paul Menzel <pmenzel@molgen.mpg.de> Reviewed-by: Aleksandr Loktionov <aleksandr.loktionov@intel.com> Reviewed-by: Vitaly Lifshits <vitaly.lifshits@intel.com> Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> Tested-by: Mor Bar-Gabay <morx.bar.gabay@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Signed-off-by: NipaLocal <nipa@local>
When igc_led_setup() fails, igc_probe() fails and triggers kernel panic in free_netdev() since unregister_netdev() is not called. [1] This behavior can be tested using fault-injection framework, especially the failslab feature. [2] Since LED support is not mandatory, treat LED setup failures as non-fatal and continue probe with a warning message, consequently avoiding the kernel panic. [1] kernel BUG at net/core/dev.c:12047! Oops: invalid opcode: 0000 [kernel-patches#1] SMP NOPTI CPU: 0 UID: 0 PID: 937 Comm: repro-igc-led-e Not tainted 6.17.0-rc4-enjuk-tnguy-00865-gc4940196ab02 kernel-patches#64 PREEMPT(voluntary) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:free_netdev+0x278/0x2b0 [...] Call Trace: <TASK> igc_probe+0x370/0x910 local_pci_probe+0x3a/0x80 pci_device_probe+0xd1/0x200 [...] [2] #!/bin/bash -ex FAILSLAB_PATH=/sys/kernel/debug/failslab/ DEVICE=0000:00:05.0 START_ADDR=$(grep " igc_led_setup" /proc/kallsyms \ | awk '{printf("0x%s", $1)}') END_ADDR=$(printf "0x%x" $((START_ADDR + 0x100))) echo $START_ADDR > $FAILSLAB_PATH/require-start echo $END_ADDR > $FAILSLAB_PATH/require-end echo 1 > $FAILSLAB_PATH/times echo 100 > $FAILSLAB_PATH/probability echo N > $FAILSLAB_PATH/ignore-gfp-wait echo $DEVICE > /sys/bus/pci/drivers/igc/bind Fixes: ea57870 ("igc: Add support for LEDs on i225/i226") Signed-off-by: Kohei Enju <enjuk@amazon.com> Reviewed-by: Paul Menzel <pmenzel@molgen.mpg.de> Reviewed-by: Aleksandr Loktionov <aleksandr.loktionov@intel.com> Reviewed-by: Vitaly Lifshits <vitaly.lifshits@intel.com> Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> Tested-by: Mor Bar-Gabay <morx.bar.gabay@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Signed-off-by: NipaLocal <nipa@local>
When igc_led_setup() fails, igc_probe() fails and triggers kernel panic in free_netdev() since unregister_netdev() is not called. [1] This behavior can be tested using fault-injection framework, especially the failslab feature. [2] Since LED support is not mandatory, treat LED setup failures as non-fatal and continue probe with a warning message, consequently avoiding the kernel panic. [1] kernel BUG at net/core/dev.c:12047! Oops: invalid opcode: 0000 [kernel-patches#1] SMP NOPTI CPU: 0 UID: 0 PID: 937 Comm: repro-igc-led-e Not tainted 6.17.0-rc4-enjuk-tnguy-00865-gc4940196ab02 kernel-patches#64 PREEMPT(voluntary) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:free_netdev+0x278/0x2b0 [...] Call Trace: <TASK> igc_probe+0x370/0x910 local_pci_probe+0x3a/0x80 pci_device_probe+0xd1/0x200 [...] [2] #!/bin/bash -ex FAILSLAB_PATH=/sys/kernel/debug/failslab/ DEVICE=0000:00:05.0 START_ADDR=$(grep " igc_led_setup" /proc/kallsyms \ | awk '{printf("0x%s", $1)}') END_ADDR=$(printf "0x%x" $((START_ADDR + 0x100))) echo $START_ADDR > $FAILSLAB_PATH/require-start echo $END_ADDR > $FAILSLAB_PATH/require-end echo 1 > $FAILSLAB_PATH/times echo 100 > $FAILSLAB_PATH/probability echo N > $FAILSLAB_PATH/ignore-gfp-wait echo $DEVICE > /sys/bus/pci/drivers/igc/bind Fixes: ea57870 ("igc: Add support for LEDs on i225/i226") Signed-off-by: Kohei Enju <enjuk@amazon.com> Reviewed-by: Paul Menzel <pmenzel@molgen.mpg.de> Reviewed-by: Aleksandr Loktionov <aleksandr.loktionov@intel.com> Reviewed-by: Vitaly Lifshits <vitaly.lifshits@intel.com> Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> Tested-by: Mor Bar-Gabay <morx.bar.gabay@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Signed-off-by: NipaLocal <nipa@local>
When igc_led_setup() fails, igc_probe() fails and triggers kernel panic in free_netdev() since unregister_netdev() is not called. [1] This behavior can be tested using fault-injection framework, especially the failslab feature. [2] Since LED support is not mandatory, treat LED setup failures as non-fatal and continue probe with a warning message, consequently avoiding the kernel panic. [1] kernel BUG at net/core/dev.c:12047! Oops: invalid opcode: 0000 [kernel-patches#1] SMP NOPTI CPU: 0 UID: 0 PID: 937 Comm: repro-igc-led-e Not tainted 6.17.0-rc4-enjuk-tnguy-00865-gc4940196ab02 kernel-patches#64 PREEMPT(voluntary) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:free_netdev+0x278/0x2b0 [...] Call Trace: <TASK> igc_probe+0x370/0x910 local_pci_probe+0x3a/0x80 pci_device_probe+0xd1/0x200 [...] [2] #!/bin/bash -ex FAILSLAB_PATH=/sys/kernel/debug/failslab/ DEVICE=0000:00:05.0 START_ADDR=$(grep " igc_led_setup" /proc/kallsyms \ | awk '{printf("0x%s", $1)}') END_ADDR=$(printf "0x%x" $((START_ADDR + 0x100))) echo $START_ADDR > $FAILSLAB_PATH/require-start echo $END_ADDR > $FAILSLAB_PATH/require-end echo 1 > $FAILSLAB_PATH/times echo 100 > $FAILSLAB_PATH/probability echo N > $FAILSLAB_PATH/ignore-gfp-wait echo $DEVICE > /sys/bus/pci/drivers/igc/bind Fixes: ea57870 ("igc: Add support for LEDs on i225/i226") Signed-off-by: Kohei Enju <enjuk@amazon.com> Reviewed-by: Paul Menzel <pmenzel@molgen.mpg.de> Reviewed-by: Aleksandr Loktionov <aleksandr.loktionov@intel.com> Reviewed-by: Vitaly Lifshits <vitaly.lifshits@intel.com> Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> Tested-by: Mor Bar-Gabay <morx.bar.gabay@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
The function ceph_process_folio_batch() sets folio_batch entries to NULL, which is an illegal state. Before folio_batch_release() crashes due to this API violation, the function ceph_shift_unused_folios_left() is supposed to remove those NULLs from the array. However, since commit ce80b76 ("ceph: introduce ceph_process_folio_batch() method"), this shifting doesn't happen anymore because the "for" loop got moved to ceph_process_folio_batch(), and now the `i` variable that remains in ceph_writepages_start() doesn't get incremented anymore, making the shifting effectively unreachable much of the time. Later, commit 1551ec6 ("ceph: introduce ceph_submit_write() method") added more preconditions for doing the shift, replacing the `i` check (with something that is still just as broken): - if ceph_process_folio_batch() fails, shifting never happens - if ceph_move_dirty_page_in_page_array() was never called (because ceph_process_folio_batch() has returned early for some of various reasons), shifting never happens - if `processed_in_fbatch` is zero (because ceph_process_folio_batch() has returned early for some of the reasons mentioned above or because ceph_move_dirty_page_in_page_array() has failed), shifting never happens Since those two commits, any problem in ceph_process_folio_batch() could crash the kernel, e.g. this way: BUG: kernel NULL pointer dereference, address: 0000000000000034 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: Oops: 0002 [kernel-patches#1] SMP NOPTI CPU: 172 UID: 0 PID: 2342707 Comm: kworker/u778:8 Not tainted 6.15.10-cm4all1-es kernel-patches#714 NONE Hardware name: Dell Inc. PowerEdge R7615/0G9DHV, BIOS 1.6.10 12/08/2023 Workqueue: writeback wb_workfn (flush-ceph-1) RIP: 0010:folios_put_refs+0x85/0x140 Code: 83 c5 01 39 e8 7e 76 48 63 c5 49 8b 5c c4 08 b8 01 00 00 00 4d 85 ed 74 05 41 8b 44 ad 00 48 8b 15 b0 > RSP: 0018:ffffb880af8db778 EFLAGS: 00010207 RAX: 0000000000000001 RBX: 0000000000000000 RCX: 0000000000000003 RDX: ffffe377cc3b0000 RSI: 0000000000000000 RDI: ffffb880af8db8c0 RBP: 0000000000000000 R08: 000000000000007d R09: 000000000102b86f R10: 0000000000000001 R11: 00000000000000ac R12: ffffb880af8db8c0 R13: 0000000000000000 R14: 0000000000000000 R15: ffff9bd262c97000 FS: 0000000000000000(0000) GS:ffff9c8efc303000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000034 CR3: 0000000160958004 CR4: 0000000000770ef0 PKRU: 55555554 Call Trace: <TASK> ceph_writepages_start+0xeb9/0x1410 The crash can be reproduced easily by changing the ceph_check_page_before_write() return value to `-E2BIG`. (Interestingly, the crash happens only if `huge_zero_folio` has already been allocated; without `huge_zero_folio`, is_huge_zero_folio(NULL) returns true and folios_put_refs() skips NULL entries instead of dereferencing them. That makes reproducing the bug somewhat unreliable. See https://lore.kernel.org/20250826231626.218675-1-max.kellermann@ionos.com for a discussion of this detail.) My suggestion is to move the ceph_shift_unused_folios_left() to right after ceph_process_folio_batch() to ensure it always gets called to fix up the illegal folio_batch state. Cc: stable@vger.kernel.org Fixes: ce80b76 ("ceph: introduce ceph_process_folio_batch() method") Link: https://lore.kernel.org/ceph-devel/aK4v548CId5GIKG1@swift.blarg.de/ Signed-off-by: Max Kellermann <max.kellermann@ionos.com> Reviewed-by: Viacheslav Dubeyko <Slava.Dubeyko@ibm.com> Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
…rnal() A crash was observed with the following output: Oops: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [kernel-patches#1] SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 1 UID: 0 PID: 2899 Comm: syz.2.399 Not tainted 6.17.0-rc5+ kernel-patches#5 PREEMPT(none) RIP: 0010:trace_kprobe_create_internal+0x3fc/0x1440 kernel/trace/trace_kprobe.c:911 Call Trace: <TASK> trace_kprobe_create_cb+0xa2/0xf0 kernel/trace/trace_kprobe.c:1089 trace_probe_create+0xf1/0x110 kernel/trace/trace_probe.c:2246 dyn_event_create+0x45/0x70 kernel/trace/trace_dynevent.c:128 create_or_delete_trace_kprobe+0x5e/0xc0 kernel/trace/trace_kprobe.c:1107 trace_parse_run_command+0x1a5/0x330 kernel/trace/trace.c:10785 vfs_write+0x2b6/0xd00 fs/read_write.c:684 ksys_write+0x129/0x240 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0x5d/0x2d0 arch/x86/entry/syscall_64.c:94 </TASK> Function kmemdup() may return NULL in trace_kprobe_create_internal(), add check for it's return value. Link: https://lore.kernel.org/all/20250916075816.3181175-1-wangliang74@huawei.com/ Fixes: 33b4e38 ("tracing: kprobe-event: Allocate string buffers from heap") Signed-off-by: Wang Liang <wangliang74@huawei.com> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
syzkaller has caught us red-handed once more, this time nesting regular spinlocks behind raw spinlocks: ============================= [ BUG: Invalid wait context ] 6.16.0-rc3-syzkaller-g7b8346bd9fce #0 Not tainted ----------------------------- syz.0.29/3743 is trying to lock: a3ff80008e2e9e18 (&xa->xa_lock#20){....}-{3:3}, at: vgic_put_irq+0xb4/0x190 arch/arm64/kvm/vgic/vgic.c:137 other info that might help us debug this: context-{5:5} 3 locks held by syz.0.29/3743: #0: a3ff80008e2e90a8 (&kvm->slots_lock){+.+.}-{4:4}, at: kvm_vgic_destroy+0x50/0x624 arch/arm64/kvm/vgic/vgic-init.c:499 kernel-patches#1: a3ff80008e2e9fa0 (&kvm->arch.config_lock){+.+.}-{4:4}, at: kvm_vgic_destroy+0x5c/0x624 arch/arm64/kvm/vgic/vgic-init.c:500 kernel-patches#2: 58f0000021be1428 (&vgic_cpu->ap_list_lock){....}-{2:2}, at: vgic_flush_pending_lpis+0x3c/0x31c arch/arm64/kvm/vgic/vgic.c:150 stack backtrace: CPU: 0 UID: 0 PID: 3743 Comm: syz.0.29 Not tainted 6.16.0-rc3-syzkaller-g7b8346bd9fce #0 PREEMPT Hardware name: linux,dummy-virt (DT) Call trace: show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:466 (C) __dump_stack+0x30/0x40 lib/dump_stack.c:94 dump_stack_lvl+0xd8/0x12c lib/dump_stack.c:120 dump_stack+0x1c/0x28 lib/dump_stack.c:129 print_lock_invalid_wait_context kernel/locking/lockdep.c:4833 [inline] check_wait_context kernel/locking/lockdep.c:4905 [inline] __lock_acquire+0x978/0x299c kernel/locking/lockdep.c:5190 lock_acquire+0x14c/0x2e0 kernel/locking/lockdep.c:5871 __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline] _raw_spin_lock_irqsave+0x5c/0x7c kernel/locking/spinlock.c:162 vgic_put_irq+0xb4/0x190 arch/arm64/kvm/vgic/vgic.c:137 vgic_flush_pending_lpis+0x24c/0x31c arch/arm64/kvm/vgic/vgic.c:158 __kvm_vgic_vcpu_destroy+0x44/0x500 arch/arm64/kvm/vgic/vgic-init.c:455 kvm_vgic_destroy+0x100/0x624 arch/arm64/kvm/vgic/vgic-init.c:505 kvm_arch_destroy_vm+0x80/0x138 arch/arm64/kvm/arm.c:244 kvm_destroy_vm virt/kvm/kvm_main.c:1308 [inline] kvm_put_kvm+0x800/0xff8 virt/kvm/kvm_main.c:1344 kvm_vm_release+0x58/0x78 virt/kvm/kvm_main.c:1367 __fput+0x4ac/0x980 fs/file_table.c:465 ____fput+0x20/0x58 fs/file_table.c:493 task_work_run+0x1bc/0x254 kernel/task_work.c:227 resume_user_mode_work include/linux/resume_user_mode.h:50 [inline] do_notify_resume+0x1b4/0x270 arch/arm64/kernel/entry-common.c:151 exit_to_user_mode_prepare arch/arm64/kernel/entry-common.c:169 [inline] exit_to_user_mode arch/arm64/kernel/entry-common.c:178 [inline] el0_svc+0xb4/0x160 arch/arm64/kernel/entry-common.c:768 el0t_64_sync_handler+0x78/0x108 arch/arm64/kernel/entry-common.c:786 el0t_64_sync+0x198/0x19c arch/arm64/kernel/entry.S:600 This is of course no good, but is at odds with how LPI refcounts are managed. Solve the locking mess by deferring the release of unreferenced LPIs after the ap_list_lock is released. Mark these to-be-released LPIs specially to avoid racing with vgic_put_irq() and causing a double-free. Since references can only be taken on LPIs with a nonzero refcount, extending the lifetime of freed LPIs is still safe. Reviewed-by: Marc Zyngier <maz@kernel.org> Reported-by: syzbot+cef594105ac7e60c6d93@syzkaller.appspotmail.com Closes: https://lore.kernel.org/kvmarm/68acd0d9.a00a0220.33401d.048b.GAE@google.com/ Link: https://lore.kernel.org/r/20250905100531.282980-5-oliver.upton@linux.dev Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
…ostcopy When you run a KVM guest with vhost-net and migrate that guest to another host, and you immediately enable postcopy after starting the migration, there is a big chance that the network connection of the guest won't work anymore on the destination side after the migration. With a debug kernel v6.16.0, there is also a call trace that looks like this: FAULT_FLAG_ALLOW_RETRY missing 881 CPU: 6 UID: 0 PID: 549 Comm: kworker/6:2 Kdump: loaded Not tainted 6.16.0 kernel-patches#56 NONE Hardware name: IBM 3931 LA1 400 (LPAR) Workqueue: events irqfd_inject [kvm] Call Trace: [<00003173cbecc634>] dump_stack_lvl+0x104/0x168 [<00003173cca69588>] handle_userfault+0xde8/0x1310 [<00003173cc756f0c>] handle_pte_fault+0x4fc/0x760 [<00003173cc759212>] __handle_mm_fault+0x452/0xa00 [<00003173cc7599ba>] handle_mm_fault+0x1fa/0x6a0 [<00003173cc73409a>] __get_user_pages+0x4aa/0xba0 [<00003173cc7349e8>] get_user_pages_remote+0x258/0x770 [<000031734be6f052>] get_map_page+0xe2/0x190 [kvm] [<000031734be6f910>] adapter_indicators_set+0x50/0x4a0 [kvm] [<000031734be7f674>] set_adapter_int+0xc4/0x170 [kvm] [<000031734be2f268>] kvm_set_irq+0x228/0x3f0 [kvm] [<000031734be27000>] irqfd_inject+0xd0/0x150 [kvm] [<00003173cc00c9ec>] process_one_work+0x87c/0x1490 [<00003173cc00dda6>] worker_thread+0x7a6/0x1010 [<00003173cc02dc36>] kthread+0x3b6/0x710 [<00003173cbed2f0c>] __ret_from_fork+0xdc/0x7f0 [<00003173cdd737ca>] ret_from_fork+0xa/0x30 3 locks held by kworker/6:2/549: #0: 00000000800bc958 ((wq_completion)events){+.+.}-{0:0}, at: process_one_work+0x7ee/0x1490 kernel-patches#1: 000030f3d527fbd0 ((work_completion)(&irqfd->inject)){+.+.}-{0:0}, at: process_one_work+0x81c/0x1490 kernel-patches#2: 00000000f99862b0 (&mm->mmap_lock){++++}-{3:3}, at: get_map_page+0xa8/0x190 [kvm] The "FAULT_FLAG_ALLOW_RETRY missing" indicates that handle_userfaultfd() saw a page fault request without ALLOW_RETRY flag set, hence userfaultfd cannot remotely resolve it (because the caller was asking for an immediate resolution, aka, FAULT_FLAG_NOWAIT, while remote faults can take time). With that, get_map_page() failed and the irq was lost. We should not be strictly in an atomic environment here and the worker should be sleepable (the call is done during an ioctl from userspace), so we can allow adapter_indicators_set() to just sleep waiting for the remote fault instead. Link: https://issues.redhat.com/browse/RHEL-42486 Signed-off-by: Peter Xu <peterx@redhat.com> [thuth: Assembled patch description and fixed some cosmetical issues] Signed-off-by: Thomas Huth <thuth@redhat.com> Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Acked-by: Janosch Frank <frankja@linux.ibm.com> Fixes: f654706 ("KVM: s390/interrupt: do not pin adapter interrupt pages") [frankja: Added fixes tag] Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
With test_progs compiled with ARM THUMB insns, trigger_func*() used for testing uprobes have odd (LSB set) entry points due to interworking. This fails alignment check first, then due to uprobe unsupported for THUMB in prepare_uprobe() -> arch_uprobe_analyze_insn() -> arm_probes_decode_insn(). First fix by setting trigger_func*() as ARM insns and rely on interworking enabled by default. Doesn't work on Debian bookworm target because insn kernel-patches#1 of funcs patched to 'UDF kernel-patches#25' which causes "Illegal instruction". Patched by dynamic loader? Kernel somehow? __attribute__((target("arm"))) Works to compile all test_progs with gcc -marm, or just attach_probe.c. Change Makefile to compile prog_tests/attach_probe.c with '-marm' to avoid using THUMB insns, with expected tests passing: kernel-patches#8/1 attach_probe/manual-default:OK kernel-patches#8/2 attach_probe/manual-legacy:OK kernel-patches#8/3 attach_probe/manual-perf:OK kernel-patches#8/4 attach_probe/manual-link:OK kernel-patches#8/5 attach_probe/auto:OK kernel-patches#8/6 attach_probe/kprobe-sleepable:OK kernel-patches#8/8 attach_probe/uprobe-sleepable:OK kernel-patches#8/9 attach_probe/uprobe-ref_ctr:OK kernel-patches#8/10 attach_probe/uprobe-long_name:OK kernel-patches#8/11 attach_probe/kprobe-long_name:OK kernel-patches#8 attach_probe:OK Note that attach_probe/uprobe-lib will still fail since it tries to attach a uprobe to the system libc.so, which is compiled for THUMB: test_attach_probe:PASS:skel_open 0 nsec test_attach_probe:PASS:skel_load 0 nsec test_attach_probe:PASS:check_bss 0 nsec test_attach_probe:PASS:uprobe_ref_ctr_cleanup 0 nsec libbpf: prog 'handle_uprobe_byname2': failed to create uprobe '/lib/arm-linux-gnueabihf/libc.so.6:0x528e1' perf event: -EINVAL test_uprobe_lib:FAIL:attach_uprobe_byname2 unexpected error: -22 kernel-patches#8/7 attach_probe/uprobe-lib:FAIL kernel-patches#8 attach_probe:FAIL Also compile other source files and binary with same issue using "-marm": bpf_cookie.c fill_link_info.c task_pt_regs.test.c uprobe_autoattach.c (also tries libc.so attach) usdt.c uprobe_multi Signed-off-by: Tony Ambardar <tony.ambardar@gmail.com>
With test_progs compiled with ARM THUMB insns, trigger_func*() used for testing uprobes have odd (LSB set) entry points due to interworking. This fails alignment check first, then due to uprobe unsupported for THUMB in prepare_uprobe() -> arch_uprobe_analyze_insn() -> arm_probes_decode_insn(). First fix by setting trigger_func*() as ARM insns and rely on interworking enabled by default. Doesn't work on Debian bookworm target because insn kernel-patches#1 of funcs patched to 'UDF kernel-patches#25' which causes "Illegal instruction". Patched by dynamic loader? Kernel somehow? __attribute__((target("arm"))) Works to compile all test_progs with gcc -marm, or just attach_probe.c. Change Makefile to compile prog_tests/attach_probe.c with '-marm' to avoid using THUMB insns, with expected tests passing: kernel-patches#8/1 attach_probe/manual-default:OK kernel-patches#8/2 attach_probe/manual-legacy:OK kernel-patches#8/3 attach_probe/manual-perf:OK kernel-patches#8/4 attach_probe/manual-link:OK kernel-patches#8/5 attach_probe/auto:OK kernel-patches#8/6 attach_probe/kprobe-sleepable:OK kernel-patches#8/8 attach_probe/uprobe-sleepable:OK kernel-patches#8/9 attach_probe/uprobe-ref_ctr:OK kernel-patches#8/10 attach_probe/uprobe-long_name:OK kernel-patches#8/11 attach_probe/kprobe-long_name:OK kernel-patches#8 attach_probe:OK Note that attach_probe/uprobe-lib will still fail since it tries to attach a uprobe to the system libc.so, which is compiled for THUMB: test_attach_probe:PASS:skel_open 0 nsec test_attach_probe:PASS:skel_load 0 nsec test_attach_probe:PASS:check_bss 0 nsec test_attach_probe:PASS:uprobe_ref_ctr_cleanup 0 nsec libbpf: prog 'handle_uprobe_byname2': failed to create uprobe '/lib/arm-linux-gnueabihf/libc.so.6:0x528e1' perf event: -EINVAL test_uprobe_lib:FAIL:attach_uprobe_byname2 unexpected error: -22 kernel-patches#8/7 attach_probe/uprobe-lib:FAIL kernel-patches#8 attach_probe:FAIL Also compile other source files and binary with same issue using "-marm": bpf_cookie.c fill_link_info.c task_pt_regs.test.c uprobe_autoattach.c (also tries libc.so attach) usdt.c uprobe_multi Signed-off-by: Tony Ambardar <tony.ambardar@gmail.com>
…tack-analysis' Eduard Zingerman says: ==================== bpf: replace path-sensitive with path-insensitive live stack analysis Consider the following program, assuming checkpoint is created for a state at instruction (3): 1: call bpf_get_prandom_u32() 2: *(u64 *)(r10 - 8) = 42 -- checkpoint #1 -- 3: if r0 != 0 goto +1 4: exit; 5: r0 = *(u64 *)(r10 - 8) 6: exit The verifier processes this program by exploring two paths: - 1 -> 2 -> 3 -> 4 - 1 -> 2 -> 3 -> 5 -> 6 When instruction (5) is processed, the current liveness tracking mechanism moves up the register parent links and records a "read" mark for stack slot -8 at checkpoint #1, stopping because of the "write" mark recorded at instruction (2). This patch set replaces the existing liveness tracking mechanism with a path-insensitive data flow analysis. The program above is processed as follows: - a data structure representing live stack slots for instructions 1-6 in frame #0 is allocated; - when instruction (2) is processed, record that slot -8 is written at instruction (2) in frame #0; - when instruction (5) is processed, record that slot -8 is read at instruction (5) in frame #0; - when instruction (6) is processed, propagate read mark for slot -8 up the control flow graph to instructions 3 and 2. The key difference is that the new mechanism operates on a control flow graph and associates read and write marks with pairs of (call chain, instruction index). In contrast, the old mechanism operates on verifier states and register parent links, associating read and write marks with verifier states. Motivation ========== As it stands, this patch set makes liveness tracking slightly less precise, as it no longer distinguishes individual program paths taken by the verifier during symbolic execution. See the "Impact on verification performance" section for details. However, this change is intended as a stepping stone toward the following goals: - Short term, integrate precision tracking into liveness analysis and remove the following code: - verifier backedge states accumulation in is_state_visited(); - most of the logic for precision tracking; - jump history tracking. - Long term, help with more efficient loop verification handling. Why integrating precision tracking? ----------------------------------- In a sense, precision tracking is very similar to liveness tracking. The data flow equations for liveness tracking look as follows: live_after = U [state[s].live_before for s in insn_successors(i)] state[i].live_before = (live_after / state[i].must_write) U state[i].may_read While data flow equations for precision tracking look as follows: precise_after = U [state[s].precise_before for s in insn_successors(i)] // if some of the instruction outputs are precise, // assume its inputs to be precise induced_precise = ⎧ state[i].may_read if (state[i].may_write ∩ precise_after) ≠ ∅ ⎨ ⎩ ∅ otherwise state[i].precise_before = (precise_after / state[i].must_write) ∩ induced_precise Where: - `may_read` set represents a union of all possibly read slots (any slot in `may_read` set might be by the instruction); - `must_write` set represents an intersection of all possibly written slots (any slot in `must_write` set is guaranteed to be written by the instruction). - `may_write` set represents a union of all possibly written slots (any slot in `may_write` set might be written by the instruction). This means that precision tracking can be implemented as a logical extension of liveness tracking: - track registers as well as stack slots; - add bit masks to represent `precise_before` and `may_write`; - add above equations for `precise_before` computation; - (linked registers require some additional consideration). Such extension would allow removal of: - precision propagation logic in verifier.c: - backtrack_insn() - mark_chain_precision() - propagate_{precision,backedges}() - push_jmp_history() and related data structures, which are only used by precision tracking; - add_scc_backedge() and related backedge state accumulation in is_state_visited(), superseded by per-callchain function state accumulated by liveness analysis. The hope here is that unifying liveness and precision tracking will reduce overall amount of code and make it easier to reason about. How this helps with loops? -------------------------- As it stands, this patch set shares the same deficiency as the current liveness tracking mechanism. Liveness marks on stack slots cannot be used to prune states when processing iterator-based loops: - such states still have branches to be explored; - meaning that not all stack slot reads have been discovered. For example: 1: while(iter_next()) { 2: if (...) 3: r0 = *(u64 *)(r10 - 8) 4: if (...) 5: r0 = *(u64 *)(r10 - 16) 6: ... 7: } For any checkpoint state created at instruction (1), it is only possible to rely on read marks for slots fp[-8] and fp[-16] once all child states of (1) have been explored. Thus, when the verifier transitions from (7) to (1), it cannot rely on read marks. However, sacrificing path-sensitivity makes it possible to run analysis defined in this patch set before main verification pass, if estimates for value ranges are available. E.g. for the following program: 1: while(iter_next()) { 2: r0 = r10 3: r0 += r2 4: r0 = *(u64 *)(r2 + 0) 5: ... 6: } If an estimate for `r2` range is available before the main verification pass, it can be used to populate read marks at instruction (4) and run the liveness analysis. Thus making conservative liveness information available during loops verification. Such estimates can be provided by some form of value range analysis. Value range analysis is also necessary to address loop verification from another angle: computing boundaries for loop induction variables and iteration counts. The hope here is that the new liveness tracking mechanism will support the broader goal of making loop verification more efficient. Validation ========== The change was tested on three program sets: - bpf selftests - sched_ext - Meta's internal set of programs Commit [#8] enables a special mode where both the current and new liveness analyses are enabled simultaneously. This mode signals an error if the new algorithm considers a stack slot dead while the current algorithm assumes it is alive. This mode was very useful for debugging. At the time of posting, no such errors have been reported for the above program sets. [#8] "bpf: signal error if old liveness is more conservative than new" Impact on memory consumption ============================ Debug patch [1] extends the kernel and veristat to count the amount of memory allocated for storing analysis data. This patch is not included in the submission. The maximal observed impact for the above program sets is 2.6Mb. Data below is shown in bytes. For bpf selftests top 5 consumers look as follows: File Program liveness mem ----------------------- ---------------- ------------ pyperf180.bpf.o on_event 2629740 pyperf600.bpf.o on_event 2287662 pyperf100.bpf.o on_event 1427022 test_verif_scale3.bpf.o balancer_ingress 1121283 pyperf_subprogs.bpf.o on_event 756900 For sched_ext top 5 consumers loog as follows: File Program liveness mem --------- ------------------------------- ------------ bpf.bpf.o lavd_enqueue 164686 bpf.bpf.o lavd_select_cpu 157393 bpf.bpf.o layered_enqueue 154817 bpf.bpf.o lavd_init 127865 bpf.bpf.o layered_dispatch 110129 For Meta's internal set of programs top consumer is 1Mb. [1] 085588e Impact on verification performance ================================== Veristat results below are reported using `-f insns_pct>1 -f !insns<500` filter and -t option (BPF_F_TEST_STATE_FREQ flag). master vs patch-set, selftests (out of ~4K programs) ---------------------------------------------------- File Program Insns (A) Insns (B) Insns (DIFF) -------------------------------- -------------------------------------- --------- --------- --------------- cpumask_success.bpf.o test_global_mask_nested_deep_array_rcu 1622 1655 +33 (+2.03%) strobemeta_bpf_loop.bpf.o on_event 2163 2684 +521 (+24.09%) test_cls_redirect.bpf.o cls_redirect 36001 42515 +6514 (+18.09%) test_cls_redirect_dynptr.bpf.o cls_redirect 2299 2339 +40 (+1.74%) test_cls_redirect_subprogs.bpf.o cls_redirect 69545 78497 +8952 (+12.87%) test_l4lb_noinline.bpf.o balancer_ingress 2993 3084 +91 (+3.04%) test_xdp_noinline.bpf.o balancer_ingress_v4 3539 3616 +77 (+2.18%) test_xdp_noinline.bpf.o balancer_ingress_v6 3608 3685 +77 (+2.13%) master vs patch-set, sched_ext (out of 148 programs) ---------------------------------------------------- File Program Insns (A) Insns (B) Insns (DIFF) --------- ---------------- --------- --------- --------------- bpf.bpf.o chaos_dispatch 2257 2287 +30 (+1.33%) bpf.bpf.o lavd_enqueue 20735 22101 +1366 (+6.59%) bpf.bpf.o lavd_select_cpu 22100 24409 +2309 (+10.45%) bpf.bpf.o layered_dispatch 25051 25606 +555 (+2.22%) bpf.bpf.o p2dq_dispatch 961 990 +29 (+3.02%) bpf.bpf.o rusty_quiescent 526 534 +8 (+1.52%) bpf.bpf.o rusty_runnable 541 547 +6 (+1.11%) Perf report =========== In relative terms, the analysis does not consume much CPU time. For example, here is a perf report collected for pyperf180 selftest: # Children Self Command Shared Object Symbol # ........ ........ ........ .................... ........................................ ... 1.22% 1.22% veristat [kernel.kallsyms] [k] bpf_update_live_stack ... Changelog ========= v1: https://lore.kernel.org/bpf/20250911010437.2779173-1-eddyz87@gmail.com/T/ v1 -> v2: - compute_postorder() fixed to handle jumps with offset -1 (syzbot). - is_state_visited() in patch #9 fixed access to uninitialized `err` (kernel test robot, Dan Carpenter). - Selftests added. - Fixed bug with write marks propagation from callee to caller, see verifier_live_stack.c:caller_stack_write() test case. - Added a patch for __not_msg() annotation for test_loader based tests. v2: https://lore.kernel.org/bpf/20250918-callchain-sensitive-liveness-v2-0-214ed2653eee@gmail.com/ v2 -> v3: - Added __diag_ignore_all("-Woverride-init", ...) in liveness.c for bpf_insn_successors() (suggested by Alexei). Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> ==================== Link: https://patch.msgid.link/20250918-callchain-sensitive-liveness-v3-0-c3cd27bacc60@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Pull request for series with
subject: bpf: BTF support for ksyms
version: 2
url: https://patchwork.ozlabs.org/project/netdev/list/?series=199405