Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use named constant num_classes instead of literals #8129

Merged
merged 1 commit into from
Oct 13, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 8 additions & 6 deletions tests/integration_tests/test_vector_data_tasks.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,8 @@
import keras
from keras.utils.np_utils import to_categorical

num_classes = 2


@keras_test
def test_vector_classification():
Expand All @@ -18,7 +20,7 @@ def test_vector_classification():
num_test=200,
input_shape=(20,),
classification=True,
num_classes=2)
num_classes=num_classes)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

Expand All @@ -27,7 +29,7 @@ def test_vector_classification():
layers.Dense(16, input_shape=(x_train.shape[-1],), activation='relu'),
layers.Dense(8),
layers.Activation('relu'),
layers.Dense(y_train.shape[-1], activation='softmax')
layers.Dense(num_classes, activation='softmax')
])
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
Expand All @@ -47,13 +49,13 @@ def test_vector_classification_functional():
num_test=200,
input_shape=(20,),
classification=True,
num_classes=2)
num_classes=num_classes)
# Test with functional API
inputs = layers.Input(shape=(x_train.shape[-1],))
x = layers.Dense(16, activation=keras.activations.relu)(inputs)
x = layers.Dense(8)(x)
x = layers.Activation('relu')(x)
outputs = layers.Dense(y_train.shape[-1], activation='softmax')(x)
outputs = layers.Dense(num_classes, activation='softmax')(x)
model = keras.models.Model(inputs, outputs)
model.compile(loss=keras.losses.sparse_categorical_crossentropy,
optimizer=keras.optimizers.RMSprop(),
Expand All @@ -73,12 +75,12 @@ def test_vector_regression():
(x_train, y_train), (x_test, y_test) = get_test_data(num_train=500,
num_test=200,
input_shape=(20,),
output_shape=(2,),
output_shape=(num_classes,),
classification=False)

model = Sequential([
layers.Dense(16, input_shape=(x_train.shape[-1],), activation='tanh'),
layers.Dense(y_train.shape[-1])
layers.Dense(num_classes)
])

model.compile(loss='hinge', optimizer='adagrad')
Expand Down
2 changes: 1 addition & 1 deletion tests/keras/legacy/models_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ def _get_test_data():
num_test=test_samples,
input_shape=(input_dim,),
classification=True,
num_classes=4)
num_classes=num_classes)
y_test = np_utils.to_categorical(y_test)
y_train = np_utils.to_categorical(y_train)
return (x_train, y_train), (x_test, y_test)
Expand Down
8 changes: 5 additions & 3 deletions tests/keras/optimizers_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,14 +11,16 @@
from keras.utils.np_utils import to_categorical
from keras import backend as K

num_classes = 2


def get_test_data():
np.random.seed(1337)
(x_train, y_train), _ = test_utils.get_test_data(num_train=1000,
num_test=200,
input_shape=(10,),
classification=True,
num_classes=2)
num_classes=num_classes)
y_train = to_categorical(y_train)
return x_train, y_train

Expand Down Expand Up @@ -123,9 +125,9 @@ def test_tfoptimizer():
from tensorflow import train
optimizer = optimizers.TFOptimizer(train.AdamOptimizer())
model = Sequential()
model.add(Dense(2, input_shape=(3,), kernel_constraint=constraints.MaxNorm(1)))
model.add(Dense(num_classes, input_shape=(3,), kernel_constraint=constraints.MaxNorm(1)))
model.compile(loss='mean_squared_error', optimizer=optimizer)
model.fit(np.random.random((5, 3)), np.random.random((5, 2)),
model.fit(np.random.random((5, 3)), np.random.random((5, num_classes)),
epochs=1, batch_size=5, verbose=0)
# not supported
with pytest.raises(NotImplementedError):
Expand Down
4 changes: 2 additions & 2 deletions tests/keras/test_callbacks.py
Original file line number Diff line number Diff line change
Expand Up @@ -634,7 +634,7 @@ def test_TensorBoard_convnet(tmpdir):
num_test=200,
input_shape=input_shape,
classification=True,
num_classes=4)
num_classes=num_classes)
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)

Expand All @@ -646,7 +646,7 @@ def test_TensorBoard_convnet(tmpdir):
Conv2D(filters=4, kernel_size=(3, 3),
activation='relu', padding='same'),
GlobalAveragePooling2D(),
Dense(y_test.shape[-1], activation='softmax')
Dense(num_classes, activation='softmax')
])
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
Expand Down
6 changes: 3 additions & 3 deletions tests/keras/test_sequential_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ def _get_test_data():
num_test=test_samples,
input_shape=(input_dim,),
classification=True,
num_classes=4)
num_classes=num_classes)
y_test = np_utils.to_categorical(y_test)
y_train = np_utils.to_categorical(y_train)
return (x_train, y_train), (x_test, y_test)
Expand Down Expand Up @@ -276,8 +276,8 @@ def test_clone_functional_model():

input_a = keras.Input(shape=(4,))
input_b = keras.Input(shape=(4,))
dense_1 = keras.layers.Dense(4,)
dense_2 = keras.layers.Dense(4,)
dense_1 = keras.layers.Dense(4)
dense_2 = keras.layers.Dense(4)

x_a = dense_1(input_a)
x_a = keras.layers.Dropout(0.5)(x_a)
Expand Down