Skip to content

Adds int4 quantization support to EinsumDense #21471

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 5 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
101 changes: 52 additions & 49 deletions keras/src/layers/core/dense.py
Original file line number Diff line number Diff line change
Expand Up @@ -693,53 +693,56 @@ def _get_kernel_with_merged_lora(self):
`kernel_scale`: The quantization scale for the merged kernel.
This is `None` if the layer is not quantized.
"""
if self.dtype_policy.quantization_mode is not None:
kernel_value = self._kernel
kernel_scale = self.kernel_scale
if self.lora_enabled:
# Dequantize kernel to float
if self.quantization_mode == "int4":
unpacked_kernel = quantizers.unpack_int4(
kernel_value, self._orig_input_dim
)
float_kernel = ops.divide(
ops.cast(unpacked_kernel, self.compute_dtype),
kernel_scale,
)
quant_range = (-8, 7)
elif self.quantization_mode == "int8":
float_kernel = ops.divide(
ops.cast(kernel_value, self.compute_dtype), kernel_scale
)
quant_range = (-127, 127)
else:
raise ValueError(
"Unsupported quantization mode: "
f"{self.quantization_mode}"
)

# Merge LoRA weights in float domain
lora_delta = (self.lora_alpha / self.lora_rank) * ops.matmul(
self.lora_kernel_a, self.lora_kernel_b
)
merged_float_kernel = ops.add(float_kernel, lora_delta)

# Requantize
requantized_kernel, kernel_scale = quantizers.abs_max_quantize(
merged_float_kernel,
axis=0,
value_range=quant_range,
dtype="int8",
to_numpy=True,
)
kernel_scale = ops.squeeze(kernel_scale, axis=0)

# Pack if int4
if self.quantization_mode == "int4":
kernel_value, _, _ = quantizers.pack_int4(
requantized_kernel
)
else:
kernel_value = requantized_kernel
if self.dtype_policy.quantization_mode is None:
return self.kernel, None

kernel_value = self._kernel
kernel_scale = self.kernel_scale

if not self.lora_enabled:
return kernel_value, kernel_scale
return self.kernel, None

# Dequantize, Merge, and Re-quantize

# Dequantize kernel to float
if self.quantization_mode == "int4":
unpacked_kernel = quantizers.unpack_int4(
kernel_value, self._orig_input_dim
)
float_kernel = ops.divide(
ops.cast(unpacked_kernel, self.compute_dtype),
kernel_scale,
)
quant_range = (-8, 7)
elif self.quantization_mode == "int8":
float_kernel = ops.divide(
ops.cast(kernel_value, self.compute_dtype), kernel_scale
)
quant_range = (-127, 127)
else:
raise ValueError(
f"Unsupported quantization mode: {self.quantization_mode}"
)

# Merge LoRA weights in float domain
lora_delta = (self.lora_alpha / self.lora_rank) * ops.matmul(
self.lora_kernel_a, self.lora_kernel_b
)
merged_float_kernel = ops.add(float_kernel, lora_delta)

# Requantize
requantized_kernel, kernel_scale = quantizers.abs_max_quantize(
merged_float_kernel,
axis=0,
value_range=quant_range,
dtype="int8",
to_numpy=True,
)
kernel_scale = ops.squeeze(kernel_scale, axis=0)

# Pack if int4
if self.quantization_mode == "int4":
kernel_value, _, _ = quantizers.pack_int4(requantized_kernel)
else:
kernel_value = requantized_kernel
return kernel_value, kernel_scale
Loading
Loading