Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 8 additions & 1 deletion keras/src/backend/jax/numpy.py
Original file line number Diff line number Diff line change
Expand Up @@ -353,7 +353,14 @@ def arctanh(x):


def argmax(x, axis=None, keepdims=False):
return jnp.argmax(x, axis=axis, keepdims=keepdims)
if x.ndim == 0:
return jnp.argmax(x, axis=axis, keepdims=keepdims)
x_float = x.astype(jnp.float32)
is_negative_zero = (x_float == 0.0) & jnp.signbit(x_float)
x_adjusted = jnp.where(
is_negative_zero, -jnp.finfo(x_float.dtype).tiny, x_float
)
return jnp.argmax(x_adjusted, axis=axis, keepdims=keepdims)


def argmin(x, axis=None, keepdims=False):
Expand Down
10 changes: 8 additions & 2 deletions keras/src/backend/numpy/numpy.py
Original file line number Diff line number Diff line change
Expand Up @@ -245,8 +245,14 @@ def arctanh(x):


def argmax(x, axis=None, keepdims=False):
axis = standardize_axis_for_numpy(axis)
return np.argmax(x, axis=axis, keepdims=keepdims).astype("int32")
if x.ndim == 0:
return np.argmax(x, axis=axis, keepdims=keepdims).astype("int32")
x_float = x.astype(np.float32)
is_negative_zero = (x_float == 0.0) & np.signbit(x_float)
x_adjusted = np.where(
is_negative_zero, -np.finfo(x_float.dtype).tiny, x_float
)
return np.argmax(x_adjusted, axis=axis, keepdims=keepdims).astype("int32")


def argmin(x, axis=None, keepdims=False):
Expand Down
37 changes: 32 additions & 5 deletions keras/src/backend/tensorflow/numpy.py
Original file line number Diff line number Diff line change
Expand Up @@ -837,12 +837,39 @@ def _keepdims(x, y, axis):


def argmax(x, axis=None, keepdims=False):
_x = x
x_float = tf.cast(x, tf.float32)
is_negative_zero = tf.logical_and(
tf.equal(x_float, 0.0),
tf.less(
tf.bitwise.bitwise_and(
tf.bitcast(x_float, tf.int32),
# tf.float32 sign bit
tf.constant(0x80000000, dtype=tf.int32),
),
0,
),
)
non_zero_mask = tf.not_equal(x_float, 0.0)
masked_abs = (
tf.abs(x_float)
+ (1.0 - tf.cast(non_zero_mask, tf.float32)) * tf.float32.max
)
min_non_zero = tf.reduce_min(masked_abs) - 1e-9
x_adjusted = tf.where(is_negative_zero, -min_non_zero, x_float)
if axis is None:
x = tf.reshape(x, [-1])
y = tf.argmax(x, axis=axis, output_type="int32")
if keepdims:
y = _keepdims(_x, y, axis)
x_adjusted = tf.reshape(x_adjusted, [-1])
y = tf.argmax(x_adjusted, axis=0, output_type=tf.int32)
if keepdims:
y = tf.reshape(y, [1, 1])
else:
rank = tf.rank(x_adjusted)
axis_tensor = tf.convert_to_tensor(axis, dtype=tf.int32)
positive_axis = tf.cond(
axis_tensor < 0, lambda: axis_tensor + rank, lambda: axis_tensor
)
y = tf.argmax(x_adjusted, axis=positive_axis, output_type=tf.int32)
if keepdims:
y = tf.expand_dims(y, axis=positive_axis)
return y


Expand Down
10 changes: 10 additions & 0 deletions keras/src/ops/numpy_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -1142,6 +1142,16 @@ def test_argmax(self):
self.assertEqual(knp.argmax(x, axis=1).shape, (None, 3))
self.assertEqual(knp.argmax(x, keepdims=True).shape, (None, 3, 3))

@pytest.mark.skipif(
keras.config.backend() == "openvino",
reason="OpenVINO doesn't support this change",
)
def test_argmax_negative_zero(self):
input_data = np.array(
[-1.0, -0.0, 1.401298464324817e-45], dtype=np.float32
)
self.assertEqual(knp.argmax(input_data), 2)

def test_argmin(self):
x = KerasTensor((None, 3))
self.assertEqual(knp.argmin(x).shape, ())
Expand Down
Loading