Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion keras/src/models/model_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -727,7 +727,8 @@ def test_functional_dict_outputs_dict_losses_invalid_keys(self):
# Fit the model to make sure compile_metrics are built
with self.assertRaisesRegex(
KeyError,
"in the `loss` argument, can't be found in the model's output",
"in the `loss` argument, can't be found "
"in either the model's output",
):
model.fit(x, (y1, y2), batch_size=2, epochs=1, verbose=0)

Expand Down
38 changes: 26 additions & 12 deletions keras/src/trainers/compile_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -534,7 +534,11 @@ def key_check_fn(key, objs):
iterator = enumerate(loss)

def key_check_fn(key, objs):
return all([key < len(obj) for obj in objs])
try:
[obj[key] for obj in objs]
except:
return False
return True

else:
raise TypeError(
Expand All @@ -547,7 +551,8 @@ def key_check_fn(key, objs):
raise KeyError(
f"The path: {current_path + (key,)} in "
"the `loss` argument, can't be found in "
"the model's output (`y_pred`)."
"either the model's output (`y_pred`) or in the "
"labels (`y_true`)."
)

self._build_nested(
Expand Down Expand Up @@ -664,20 +669,29 @@ def call(self, y_true, y_pred, sample_weight=None):
try:
tree.assert_same_structure(y_pred, y_true, check_types=False)
except ValueError:
# y_true is either flat or leaf
if (
not tree.is_nested(y_true)
and hasattr(y_pred, "__len__")
and len(y_pred) == 1
):
y_true = [y_true]
try:
y_true = tree.pack_sequence_as(y_pred, y_true)
# Check case where y_true is either flat or leaf
if (
not tree.is_nested(y_true)
and hasattr(y_pred, "__len__")
and len(y_pred) == 1
):
y_true = [y_true]
try:
y_true = tree.pack_sequence_as(y_pred, y_true)
except:
# Check case where y_true has the same structure but uses
# different (but reconcilable) container types,
# e.g `list` vs `tuple`.
tree.assert_same_paths(y_true, y_pred)
y_true = tree.pack_sequence_as(y_pred, tree.flatten(y_true))
except:
y_true_struct = tree.map_structure(lambda _: "*", y_true)
y_pred_struct = tree.map_structure(lambda _: "*", y_pred)
raise ValueError(
"y_true and y_pred have different structures.\n"
f"y_true: {y_true}\n"
f"y_pred: {y_pred}\n"
f"y_true: {y_true_struct}\n"
f"y_pred: {y_pred_struct}\n"
)

if not self.built:
Expand Down
33 changes: 33 additions & 0 deletions keras/src/trainers/compile_utils_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -490,3 +490,36 @@ def test_struct_loss_invalid_path(self):
KeyError, "can't be found in the model's output"
):
compile_loss.build(y_true_symb, y_pred_symb)

def test_different_container_types(self):
y1, y2, y3 = np.array([[1]]), np.array([[2]]), np.array([[3]])
y_true = ([{"a": y1}, {"b": ([y2], y3)}],)
y_pred = [({"a": y1}, {"b": [(y2,), y3]})]
loss = "mse"
compile_loss = CompileLoss(loss=loss, output_names=["a", "b", "c"])
y_true_symb = tree.map_structure(
lambda _: backend.KerasTensor((1, 1)), y_true
)
y_pred_symb = tree.map_structure(
lambda _: backend.KerasTensor((1, 1)), y_pred
)
compile_loss.build(y_true_symb, y_pred_symb)
compile_loss(y_true, y_pred)

def test_structure_mismatch(self):
y_true = [np.array([[1]]), np.array([[1]])]
y_pred = [np.array([[1]]), np.array([[1]])]
loss = ["mse", "mse"]
compile_loss = CompileLoss(loss=loss, output_names=["a", "b"])
y_true_symb = tree.map_structure(
lambda _: backend.KerasTensor((1, 1)), y_true
)
y_pred_symb = tree.map_structure(
lambda _: backend.KerasTensor((1, 1)), y_pred
)
compile_loss.build(y_true_symb, y_pred_symb)
with self.assertRaisesRegex(
ValueError, "y_true and y_pred have different structures."
):
wrong_struc_y_true = [np.array([[1]])]
compile_loss(wrong_struc_y_true, y_pred)