Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove \n, ' ', and '' again #101

Merged
merged 2 commits into from
Jun 17, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 9 additions & 3 deletions scripts/generate_tf_guides.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,9 +136,8 @@


def generate_single_tf_guide(source_dir, target_dir, title, source_name, target_name):
f = open(Path(source_dir) / (source_name + ".ipynb"))
original_ipynb = json.loads(f.read())
f.close()
nb = (Path(source_dir) / source_name).with_suffix(".ipynb")
original_ipynb = json.loads(nb.read_text())

# Skip first title cell
cells = original_ipynb["cells"][1:]
Expand All @@ -164,6 +163,13 @@ def generate_single_tf_guide(source_dir, target_dir, title, source_name, target_
if len(lines) < 2:
new_lines.append(lines[-1])
cell["source"] = new_lines
elif cell["cell_type"] == "code":
lines = cell["source"]
if not lines[0].strip():
lines = lines[1:]
if not lines[-1].strip():
lines = lines[:-1]
cell["source"] = lines

# Add header cells
header_cells = copy.deepcopy(TF_IPYNB_CELLS_TEMPLATE)
Expand Down
9 changes: 2 additions & 7 deletions tf/custom_callback.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -203,8 +203,7 @@
" loss=\"mean_squared_error\",\n",
" metrics=[\"mean_absolute_error\"],\n",
" )\n",
" return model\n",
""
" return model\n"
]
},
{
Expand Down Expand Up @@ -263,7 +262,6 @@
},
"outputs": [],
"source": [
"\n",
"class CustomCallback(keras.callbacks.Callback):\n",
" def on_train_begin(self, logs=None):\n",
" keys = list(logs.keys())\n",
Expand Down Expand Up @@ -319,8 +317,7 @@
"\n",
" def on_predict_batch_end(self, batch, logs=None):\n",
" keys = list(logs.keys())\n",
" print(\"...Predicting: end of batch {}; got log keys: {}\".format(batch, keys))\n",
""
" print(\"...Predicting: end of batch {}; got log keys: {}\".format(batch, keys))\n"
]
},
{
Expand Down Expand Up @@ -381,7 +378,6 @@
},
"outputs": [],
"source": [
"\n",
"class LossAndErrorPrintingCallback(keras.callbacks.Callback):\n",
" def on_train_batch_end(self, batch, logs=None):\n",
" print(\"For batch {}, loss is {:7.2f}.\".format(batch, logs[\"loss\"]))\n",
Expand Down Expand Up @@ -562,7 +558,6 @@
},
"outputs": [],
"source": [
"\n",
"class CustomLearningRateScheduler(keras.callbacks.Callback):\n",
" \"\"\"Learning rate scheduler which sets the learning rate according to schedule.\n",
"\n",
Expand Down
32 changes: 7 additions & 25 deletions tf/custom_layers_and_models.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,6 @@
},
"outputs": [],
"source": [
"\n",
"class Linear(keras.layers.Layer):\n",
" def __init__(self, units=32, input_dim=32):\n",
" super(Linear, self).__init__()\n",
Expand All @@ -130,8 +129,7 @@
" )\n",
"\n",
" def call(self, inputs):\n",
" return tf.matmul(inputs, self.w) + self.b\n",
""
" return tf.matmul(inputs, self.w) + self.b\n"
]
},
{
Expand Down Expand Up @@ -203,7 +201,6 @@
},
"outputs": [],
"source": [
"\n",
"class Linear(keras.layers.Layer):\n",
" def __init__(self, units=32, input_dim=32):\n",
" super(Linear, self).__init__()\n",
Expand Down Expand Up @@ -247,7 +244,6 @@
},
"outputs": [],
"source": [
"\n",
"class ComputeSum(keras.layers.Layer):\n",
" def __init__(self, input_dim):\n",
" super(ComputeSum, self).__init__()\n",
Expand Down Expand Up @@ -314,7 +310,6 @@
},
"outputs": [],
"source": [
"\n",
"class Linear(keras.layers.Layer):\n",
" def __init__(self, units=32, input_dim=32):\n",
" super(Linear, self).__init__()\n",
Expand All @@ -324,8 +319,7 @@
" self.b = self.add_weight(shape=(units,), initializer=\"zeros\", trainable=True)\n",
"\n",
" def call(self, inputs):\n",
" return tf.matmul(inputs, self.w) + self.b\n",
""
" return tf.matmul(inputs, self.w) + self.b\n"
]
},
{
Expand All @@ -352,7 +346,6 @@
},
"outputs": [],
"source": [
"\n",
"class Linear(keras.layers.Layer):\n",
" def __init__(self, units=32):\n",
" super(Linear, self).__init__()\n",
Expand All @@ -369,8 +362,7 @@
" )\n",
"\n",
" def call(self, inputs):\n",
" return tf.matmul(inputs, self.w) + self.b\n",
""
" return tf.matmul(inputs, self.w) + self.b\n"
]
},
{
Expand Down Expand Up @@ -482,8 +474,7 @@
"\n",
" def call(self, inputs):\n",
" self.add_loss(self.rate * tf.reduce_sum(inputs))\n",
" return inputs\n",
""
" return inputs\n"
]
},
{
Expand All @@ -508,7 +499,6 @@
},
"outputs": [],
"source": [
"\n",
"class OuterLayer(keras.layers.Layer):\n",
" def __init__(self):\n",
" super(OuterLayer, self).__init__()\n",
Expand Down Expand Up @@ -549,7 +539,6 @@
},
"outputs": [],
"source": [
"\n",
"class OuterLayerWithKernelRegularizer(keras.layers.Layer):\n",
" def __init__(self):\n",
" super(OuterLayerWithKernelRegularizer, self).__init__()\n",
Expand Down Expand Up @@ -666,7 +655,6 @@
},
"outputs": [],
"source": [
"\n",
"class LogisticEndpoint(keras.layers.Layer):\n",
" def __init__(self, name=None):\n",
" super(LogisticEndpoint, self).__init__(name=name)\n",
Expand All @@ -685,8 +673,7 @@
" self.add_metric(acc, name=\"accuracy\")\n",
"\n",
" # Return the inference-time prediction tensor (for `.predict()`).\n",
" return tf.nn.softmax(logits)\n",
""
" return tf.nn.softmax(logits)\n"
]
},
{
Expand Down Expand Up @@ -775,7 +762,6 @@
},
"outputs": [],
"source": [
"\n",
"class Linear(keras.layers.Layer):\n",
" def __init__(self, units=32):\n",
" super(Linear, self).__init__()\n",
Expand Down Expand Up @@ -827,7 +813,6 @@
},
"outputs": [],
"source": [
"\n",
"class Linear(keras.layers.Layer):\n",
" def __init__(self, units=32, **kwargs):\n",
" super(Linear, self).__init__(**kwargs)\n",
Expand Down Expand Up @@ -906,7 +891,6 @@
},
"outputs": [],
"source": [
"\n",
"class CustomDropout(keras.layers.Layer):\n",
" def __init__(self, rate, **kwargs):\n",
" super(CustomDropout, self).__init__(**kwargs)\n",
Expand All @@ -915,8 +899,7 @@
" def call(self, inputs, training=None):\n",
" if training:\n",
" return tf.nn.dropout(inputs, rate=self.rate)\n",
" return inputs\n",
""
" return inputs\n"
]
},
{
Expand Down Expand Up @@ -1122,8 +1105,7 @@
" z_log_var - tf.square(z_mean) - tf.exp(z_log_var) + 1\n",
" )\n",
" self.add_loss(kl_loss)\n",
" return reconstructed\n",
""
" return reconstructed\n"
]
},
{
Expand Down
10 changes: 2 additions & 8 deletions tf/customizing_what_happens_in_fit.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -170,7 +170,6 @@
},
"outputs": [],
"source": [
"\n",
"class CustomModel(keras.Model):\n",
" def train_step(self, data):\n",
" # Unpack the data. Its structure depends on your model and\n",
Expand All @@ -191,8 +190,7 @@
" # Update metrics (includes the metric that tracks the loss)\n",
" self.compiled_metrics.update_state(y, y_pred)\n",
" # Return a dict mapping metric names to current value\n",
" return {m.name: m.result() for m in self.metrics}\n",
""
" return {m.name: m.result() for m in self.metrics}\n"
]
},
{
Expand Down Expand Up @@ -319,7 +317,6 @@
},
"outputs": [],
"source": [
"\n",
"class CustomModel(keras.Model):\n",
" def train_step(self, data):\n",
" # Unpack the data. Its structure depends on your model and\n",
Expand Down Expand Up @@ -391,7 +388,6 @@
},
"outputs": [],
"source": [
"\n",
"class CustomModel(keras.Model):\n",
" def test_step(self, data):\n",
" # Unpack the data\n",
Expand Down Expand Up @@ -504,7 +500,6 @@
},
"outputs": [],
"source": [
"\n",
"class GAN(keras.Model):\n",
" def __init__(self, discriminator, generator, latent_dim):\n",
" super(GAN, self).__init__()\n",
Expand Down Expand Up @@ -560,8 +555,7 @@
" g_loss = self.loss_fn(misleading_labels, predictions)\n",
" grads = tape.gradient(g_loss, self.generator.trainable_weights)\n",
" self.g_optimizer.apply_gradients(zip(grads, self.generator.trainable_weights))\n",
" return {\"d_loss\": d_loss, \"g_loss\": g_loss}\n",
""
" return {\"d_loss\": d_loss, \"g_loss\": g_loss}\n"
]
},
{
Expand Down
3 changes: 0 additions & 3 deletions tf/functional.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -613,7 +613,6 @@
},
"outputs": [],
"source": [
"\n",
"def get_model():\n",
" inputs = keras.Input(shape=(128,))\n",
" outputs = layers.Dense(1)(inputs)\n",
Expand Down Expand Up @@ -1129,7 +1128,6 @@
},
"outputs": [],
"source": [
"\n",
"class CustomDense(layers.Layer):\n",
" def __init__(self, units=32):\n",
" super(CustomDense, self).__init__()\n",
Expand Down Expand Up @@ -1175,7 +1173,6 @@
},
"outputs": [],
"source": [
"\n",
"class CustomDense(layers.Layer):\n",
" def __init__(self, units=32):\n",
" super(CustomDense, self).__init__()\n",
Expand Down
11 changes: 2 additions & 9 deletions tf/masking_and_padding.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -177,8 +177,7 @@
"padded_inputs = tf.keras.preprocessing.sequence.pad_sequences(\n",
" raw_inputs, padding=\"post\"\n",
")\n",
"print(padded_inputs)\n",
""
"print(padded_inputs)\n"
]
},
{
Expand Down Expand Up @@ -346,7 +345,6 @@
},
"outputs": [],
"source": [
"\n",
"class MyLayer(layers.Layer):\n",
" def __init__(self, **kwargs):\n",
" super(MyLayer, self).__init__(**kwargs)\n",
Expand Down Expand Up @@ -409,7 +407,6 @@
},
"outputs": [],
"source": [
"\n",
"class TemporalSplit(keras.layers.Layer):\n",
" \"\"\"Split the input tensor into 2 tensors along the time dimension.\"\"\"\n",
"\n",
Expand Down Expand Up @@ -450,7 +447,6 @@
},
"outputs": [],
"source": [
"\n",
"class CustomEmbedding(keras.layers.Layer):\n",
" def __init__(self, input_dim, output_dim, mask_zero=False, **kwargs):\n",
" super(CustomEmbedding, self).__init__(**kwargs)\n",
Expand Down Expand Up @@ -516,16 +512,14 @@
},
"outputs": [],
"source": [
"\n",
"class MyActivation(keras.layers.Layer):\n",
" def __init__(self, **kwargs):\n",
" super(MyActivation, self).__init__(**kwargs)\n",
" # Signal that the layer is safe for mask propagation\n",
" self.supports_masking = True\n",
"\n",
" def call(self, inputs):\n",
" return tf.nn.relu(inputs)\n",
""
" return tf.nn.relu(inputs)\n"
]
},
{
Expand Down Expand Up @@ -587,7 +581,6 @@
},
"outputs": [],
"source": [
"\n",
"class TemporalSoftmax(keras.layers.Layer):\n",
" def call(self, inputs, mask=None):\n",
" broadcast_float_mask = tf.expand_dims(tf.cast(mask, \"float32\"), -1)\n",
Expand Down
Loading