Skip to content

Commit

Permalink
Merge pull request AUTOMATIC1111#7730 from CCRcmcpe/fix-dpm-sde-batch
Browse files Browse the repository at this point in the history
Fix DPM++ SDE not deterministic across different batch sizes (AUTOMATIC1111#5210)
  • Loading branch information
AUTOMATIC1111 authored Feb 19, 2023
2 parents a742fac + f55a7e0 commit a77ac2e
Show file tree
Hide file tree
Showing 2 changed files with 31 additions and 8 deletions.
38 changes: 30 additions & 8 deletions modules/sd_samplers_kdiffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -269,6 +269,16 @@ def get_sigmas(self, p, steps):

return sigmas

def create_noise_sampler(self, x, sigmas, p):
"""For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
if shared.opts.no_dpmpp_sde_batch_determinism:
return None

from k_diffusion.sampling import BrownianTreeNoiseSampler
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)

def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)

Expand All @@ -278,18 +288,24 @@ def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning,
xi = x + noise * sigma_sched[0]

extra_params_kwargs = self.initialize(p)
if 'sigma_min' in inspect.signature(self.func).parameters:
parameters = inspect.signature(self.func).parameters

if 'sigma_min' in parameters:
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
extra_params_kwargs['sigma_min'] = sigma_sched[-2]
if 'sigma_max' in inspect.signature(self.func).parameters:
if 'sigma_max' in parameters:
extra_params_kwargs['sigma_max'] = sigma_sched[0]
if 'n' in inspect.signature(self.func).parameters:
if 'n' in parameters:
extra_params_kwargs['n'] = len(sigma_sched) - 1
if 'sigma_sched' in inspect.signature(self.func).parameters:
if 'sigma_sched' in parameters:
extra_params_kwargs['sigma_sched'] = sigma_sched
if 'sigmas' in inspect.signature(self.func).parameters:
if 'sigmas' in parameters:
extra_params_kwargs['sigmas'] = sigma_sched

if self.funcname == 'sample_dpmpp_sde':
noise_sampler = self.create_noise_sampler(x, sigmas, p)
extra_params_kwargs['noise_sampler'] = noise_sampler

self.model_wrap_cfg.init_latent = x
self.last_latent = x
extra_args={
Expand All @@ -303,22 +319,28 @@ def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning,

return samples

def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None):
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps = steps or p.steps

sigmas = self.get_sigmas(p, steps)

x = x * sigmas[0]

extra_params_kwargs = self.initialize(p)
if 'sigma_min' in inspect.signature(self.func).parameters:
parameters = inspect.signature(self.func).parameters

if 'sigma_min' in parameters:
extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
if 'n' in inspect.signature(self.func).parameters:
if 'n' in parameters:
extra_params_kwargs['n'] = steps
else:
extra_params_kwargs['sigmas'] = sigmas

if self.funcname == 'sample_dpmpp_sde':
noise_sampler = self.create_noise_sampler(x, sigmas, p)
extra_params_kwargs['noise_sampler'] = noise_sampler

self.last_latent = x
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
'cond': conditioning,
Expand Down
1 change: 1 addition & 0 deletions modules/shared.py
Original file line number Diff line number Diff line change
Expand Up @@ -414,6 +414,7 @@ def list_samplers():
options_templates.update(options_section(('compatibility', "Compatibility"), {
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
"no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."),
"use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
}))

Expand Down

0 comments on commit a77ac2e

Please sign in to comment.