Skip to content

Commit

Permalink
edit loss desc
Browse files Browse the repository at this point in the history
  • Loading branch information
coreyhu authored and waleedka committed Jul 12, 2018
1 parent 8bed842 commit 8075ecc
Showing 1 changed file with 31 additions and 31 deletions.
62 changes: 31 additions & 31 deletions mrcnn/model.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
"""
Mask R-CNN
The main Mask R-CNN model implemenetation.
The main Mask R-CNN model implementation.
Copyright (c) 2017 Matterport, Inc.
Licensed under the MIT License (see LICENSE for details)
Expand Down Expand Up @@ -63,7 +63,7 @@ def call(self, inputs, training=None):
Note about training values:
None: Train BN layers. This is the normal mode
False: Freeze BN layers. Good when batch size is small
True: (don't use). Set layer in training mode even when inferencing
True: (don't use). Set layer in training mode even when making inferences
"""
return super(self.__class__, self).call(inputs, training=training)

Expand Down Expand Up @@ -97,12 +97,12 @@ def identity_block(input_tensor, kernel_size, filters, stage, block,
"""The identity_block is the block that has no conv layer at shortcut
# Arguments
input_tensor: input tensor
kernel_size: defualt 3, the kernel size of middle conv layer at main path
kernel_size: default 3, the kernel size of middle conv layer at main path
filters: list of integers, the nb_filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
use_bias: Boolean. To use or not use a bias in conv layers.
train_bn: Boolean. Train or freeze Batch Norm layres
train_bn: Boolean. Train or freeze Batch Norm layers
"""
nb_filter1, nb_filter2, nb_filter3 = filters
conv_name_base = 'res' + str(stage) + block + '_branch'
Expand Down Expand Up @@ -132,12 +132,12 @@ def conv_block(input_tensor, kernel_size, filters, stage, block,
"""conv_block is the block that has a conv layer at shortcut
# Arguments
input_tensor: input tensor
kernel_size: defualt 3, the kernel size of middle conv layer at main path
kernel_size: default 3, the kernel size of middle conv layer at main path
filters: list of integers, the nb_filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
use_bias: Boolean. To use or not use a bias in conv layers.
train_bn: Boolean. Train or freeze Batch Norm layres
train_bn: Boolean. Train or freeze Batch Norm layers
Note that from stage 3, the first conv layer at main path is with subsample=(2,2)
And the shortcut should have subsample=(2,2) as well
"""
Expand Down Expand Up @@ -172,7 +172,7 @@ def resnet_graph(input_image, architecture, stage5=False, train_bn=True):
"""Build a ResNet graph.
architecture: Can be resnet50 or resnet101
stage5: Boolean. If False, stage5 of the network is not created
train_bn: Boolean. Train or freeze Batch Norm layres
train_bn: Boolean. Train or freeze Batch Norm layers
"""
assert architecture in ["resnet50", "resnet101"]
# Stage 1
Expand Down Expand Up @@ -337,7 +337,7 @@ def compute_output_shape(self, input_shape):
############################################################

def log2_graph(x):
"""Implementatin of Log2. TF doesn't have a native implemenation."""
"""Implementation of Log2. TF doesn't have a native implementation."""
return tf.log(x) / tf.log(2.0)


Expand Down Expand Up @@ -399,7 +399,7 @@ def call(self, inputs):
ix = tf.where(tf.equal(roi_level, level))
level_boxes = tf.gather_nd(boxes, ix)

# Box indicies for crop_and_resize.
# Box indices for crop_and_resize.
box_indices = tf.cast(ix[:, 0], tf.int32)

# Keep track of which box is mapped to which level
Expand Down Expand Up @@ -457,9 +457,9 @@ def overlaps_graph(boxes1, boxes2):
"""Computes IoU overlaps between two sets of boxes.
boxes1, boxes2: [N, (y1, x1, y2, x2)].
"""
# 1. Tile boxes2 and repeate boxes1. This allows us to compare
# 1. Tile boxes2 and repeat boxes1. This allows us to compare
# every boxes1 against every boxes2 without loops.
# TF doesn't have an equivalent to np.repeate() so simulate it
# TF doesn't have an equivalent to np.repeat() so simulate it
# using tf.tile() and tf.reshape.
b1 = tf.reshape(tf.tile(tf.expand_dims(boxes1, 1),
[1, 1, tf.shape(boxes2)[0]]), [-1, 4])
Expand Down Expand Up @@ -539,7 +539,7 @@ def detection_targets_graph(proposals, gt_class_ids, gt_boxes, gt_masks, config)
crowd_iou_max = tf.reduce_max(crowd_overlaps, axis=1)
no_crowd_bool = (crowd_iou_max < 0.001)

# Determine postive and negative ROIs
# Determine positive and negative ROIs
roi_iou_max = tf.reduce_max(overlaps, axis=1)
# 1. Positive ROIs are those with >= 0.5 IoU with a GT box
positive_roi_bool = (roi_iou_max >= 0.5)
Expand Down Expand Up @@ -584,7 +584,7 @@ def detection_targets_graph(proposals, gt_class_ids, gt_boxes, gt_masks, config)
# Compute mask targets
boxes = positive_rois
if config.USE_MINI_MASK:
# Transform ROI corrdinates from normalized image space
# Transform ROI coordinates from normalized image space
# to normalized mini-mask space.
y1, x1, y2, x2 = tf.split(positive_rois, 4, axis=1)
gt_y1, gt_x1, gt_y2, gt_x2 = tf.split(roi_gt_boxes, 4, axis=1)
Expand Down Expand Up @@ -741,7 +741,7 @@ def nms_keep_map(class_id):
tf.gather(pre_nms_scores, ixs),
max_output_size=config.DETECTION_MAX_INSTANCES,
iou_threshold=config.DETECTION_NMS_THRESHOLD)
# Map indicies
# Map indices
class_keep = tf.gather(keep, tf.gather(ixs, class_keep))
# Pad with -1 so returned tensors have the same shape
gap = config.DETECTION_MAX_INSTANCES - tf.shape(class_keep)[0]
Expand Down Expand Up @@ -844,8 +844,8 @@ def rpn_graph(feature_map, anchors_per_location, anchor_stride):
rpn_bbox: [batch, H, W, (dy, dx, log(dh), log(dw))] Deltas to be
applied to anchors.
"""
# TODO: check if stride of 2 causes alignment issues if the featuremap
# is not even.
# TODO: check if stride of 2 causes alignment issues if the feature map
# is not even.
# Shared convolutional base of the RPN
shared = KL.Conv2D(512, (3, 3), padding='same', activation='relu',
strides=anchor_stride,
Expand Down Expand Up @@ -908,12 +908,12 @@ def fpn_classifier_graph(rois, feature_maps, image_meta,
rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized
coordinates.
feature_maps: List of feature maps from diffent layers of the pyramid,
feature_maps: List of feature maps from different layers of the pyramid,
[P2, P3, P4, P5]. Each has a different resolution.
- image_meta: [batch, (meta data)] Image details. See compose_image_meta()
pool_size: The width of the square feature map generated from ROI Pooling.
num_classes: number of classes, which determines the depth of the results
train_bn: Boolean. Train or freeze Batch Norm layres
train_bn: Boolean. Train or freeze Batch Norm layers
fc_layers_size: Size of the 2 FC layers
Returns:
Expand Down Expand Up @@ -962,12 +962,12 @@ def build_fpn_mask_graph(rois, feature_maps, image_meta,
rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized
coordinates.
feature_maps: List of feature maps from diffent layers of the pyramid,
feature_maps: List of feature maps from different layers of the pyramid,
[P2, P3, P4, P5]. Each has a different resolution.
image_meta: [batch, (meta data)] Image details. See compose_image_meta()
pool_size: The width of the square feature map generated from ROI Pooling.
num_classes: number of classes, which determines the depth of the results
train_bn: Boolean. Train or freeze Batch Norm layres
train_bn: Boolean. Train or freeze Batch Norm layers
Returns: Masks [batch, roi_count, height, width, num_classes]
"""
Expand Down Expand Up @@ -1014,7 +1014,7 @@ def build_fpn_mask_graph(rois, feature_maps, image_meta,

def smooth_l1_loss(y_true, y_pred):
"""Implements Smooth-L1 loss.
y_true and y_pred are typicallly: [N, 4], but could be any shape.
y_true and y_pred are typically: [N, 4], but could be any shape.
"""
diff = K.abs(y_true - y_pred)
less_than_one = K.cast(K.less(diff, 1.0), "float32")
Expand All @@ -1039,7 +1039,7 @@ def rpn_class_loss_graph(rpn_match, rpn_class_logits):
# Pick rows that contribute to the loss and filter out the rest.
rpn_class_logits = tf.gather_nd(rpn_class_logits, indices)
anchor_class = tf.gather_nd(anchor_class, indices)
# Crossentropy loss
# Cross entropy loss
loss = K.sparse_categorical_crossentropy(target=anchor_class,
output=rpn_class_logits,
from_logits=True)
Expand Down Expand Up @@ -1129,7 +1129,7 @@ def mrcnn_bbox_loss_graph(target_bbox, target_class_ids, pred_bbox):
pred_bbox = K.reshape(pred_bbox, (-1, K.int_shape(pred_bbox)[2], 4))

# Only positive ROIs contribute to the loss. And only
# the right class_id of each ROI. Get their indicies.
# the right class_id of each ROI. Get their indices.
positive_roi_ix = tf.where(target_class_ids > 0)[:, 0]
positive_roi_class_ids = tf.cast(
tf.gather(target_class_ids, positive_roi_ix), tf.int64)
Expand Down Expand Up @@ -1194,7 +1194,7 @@ def load_image_gt(dataset, config, image_id, augment=False, augmentation=None,
use_mini_mask=False):
"""Load and return ground truth data for an image (image, mask, bounding boxes).
augment: (Depricated. Use augmentation instead). If true, apply random
augment: (deprecated. Use augmentation instead). If true, apply random
image augmentation. Currently, only horizontal flipping is offered.
augmentation: Optional. An imgaug (https://github.com/aleju/imgaug) augmentation.
For example, passing imgaug.augmenters.Fliplr(0.5) flips images
Expand Down Expand Up @@ -1229,7 +1229,7 @@ def load_image_gt(dataset, config, image_id, augment=False, augmentation=None,
# Random horizontal flips.
# TODO: will be removed in a future update in favor of augmentation
if augment:
logging.warning("'augment' is depricated. Use 'augmentation' instead.")
logging.warning("'augment' is deprecated. Use 'augmentation' instead.")
if random.randint(0, 1):
image = np.fliplr(image)
mask = np.fliplr(mask)
Expand All @@ -1239,7 +1239,7 @@ def load_image_gt(dataset, config, image_id, augment=False, augmentation=None,
if augmentation:
import imgaug

# Augmentors that are safe to apply to masks
# Augmenters that are safe to apply to masks
# Some, such as Affine, have settings that make them unsafe, so always
# test your augmentation on masks
MASK_AUGMENTERS = ["Sequential", "SomeOf", "OneOf", "Sometimes",
Expand All @@ -1248,7 +1248,7 @@ def load_image_gt(dataset, config, image_id, augment=False, augmentation=None,

def hook(images, augmenter, parents, default):
"""Determines which augmenters to apply to masks."""
return (augmenter.__class__.__name__ in MASK_AUGMENTERS)
return augmenter.__class__.__name__ in MASK_AUGMENTERS

# Store shapes before augmentation to compare
image_shape = image.shape
Expand Down Expand Up @@ -1302,7 +1302,7 @@ def build_detection_targets(rpn_rois, gt_class_ids, gt_boxes, gt_masks, config):
rpn_rois: [N, (y1, x1, y2, x2)] proposal boxes.
gt_class_ids: [instance count] Integer class IDs
gt_boxes: [instance count, (y1, x1, y2, x2)]
gt_masks: [height, width, instance count] Grund truth masks. Can be full
gt_masks: [height, width, instance count] Ground truth masks. Can be full
size or mini-masks.
Returns:
Expand Down Expand Up @@ -1357,7 +1357,7 @@ def build_detection_targets(rpn_rois, gt_class_ids, gt_boxes, gt_masks, config):

# Negative ROIs are those with max IoU 0.1-0.5 (hard example mining)
# TODO: To hard example mine or not to hard example mine, that's the question
# bg_ids = np.where((rpn_roi_iou_max >= 0.1) & (rpn_roi_iou_max < 0.5))[0]
# bg_ids = np.where((rpn_roi_iou_max >= 0.1) & (rpn_roi_iou_max < 0.5))[0]
bg_ids = np.where(rpn_roi_iou_max < 0.5)[0]

# Subsample ROIs. Aim for 33% foreground.
Expand All @@ -1373,7 +1373,7 @@ def build_detection_targets(rpn_rois, gt_class_ids, gt_boxes, gt_masks, config):
keep_bg_ids = np.random.choice(bg_ids, remaining, replace=False)
else:
keep_bg_ids = bg_ids
# Combine indicies of ROIs to keep
# Combine indices of ROIs to keep
keep = np.concatenate([keep_fg_ids, keep_bg_ids])
# Need more?
remaining = config.TRAIN_ROIS_PER_IMAGE - keep.shape[0]
Expand Down Expand Up @@ -1644,7 +1644,7 @@ def data_generator(dataset, config, shuffle=True, augment=False, augmentation=No
dataset: The Dataset object to pick data from
config: The model config object
shuffle: If True, shuffles the samples before every epoch
augment: (Depricated. Use augmentation instead). If true, apply random
augment: (deprecated. Use augmentation instead). If true, apply random
image augmentation. Currently, only horizontal flipping is offered.
augmentation: Optional. An imgaug (https://github.com/aleju/imgaug) augmentation.
For example, passing imgaug.augmenters.Fliplr(0.5) flips images
Expand Down

0 comments on commit 8075ecc

Please sign in to comment.