Skip to content

Commit

Permalink
tf11_build_neural_network.py
Browse files Browse the repository at this point in the history
  • Loading branch information
katychou committed Jun 28, 2017
1 parent d86e6c5 commit a4979f1
Showing 1 changed file with 40 additions and 0 deletions.
40 changes: 40 additions & 0 deletions tf11_build_neural_network.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
##tensorflow
#tf11_build_neural_network.py

import tensorflow as tf
import numpy as np

def add_layer(inputs, in_size, out_size, activation_function=None):
# add one more layer and return the output of this layer
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs

x_data=np.linspace(-1,1,300)[:,np.newaxis]
noise=np.random.normal(0,0.05,x_data.shape)
y_data=np.square(x_data)-0.5+noise

xs=tf.placeholder(tf.float32,[None,1])
ys=tf.placeholder(tf.float32,[None,1])

l1=add_layer(xs,1,10,activation_function=tf.nn.relu)
predition=add_layer(l1,10,1,activation_function=None)

loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-predition),
#reducition_indices=[1]))
reduction_indices=[1]))
train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)

init=tf.initialize_all_variables()
sess=tf.Session()
sess.run(init)

for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50 ==0:
print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))

0 comments on commit a4979f1

Please sign in to comment.