email-threadify-api/
│
├─ docs/ ← high-level documentation
│ ├─ architecture.md ← overview of modules & data flow
│ ├─ api-reference.md ← endpoint specs (inputs, outputs, examples)
│ └─ setup-guide.md ← step-by-step dev & prod setup
│
├─ data/ ← sample datasets & fixtures
│ ├─ enron_sample.json
│ └─ dummy_threads.json
│
├─ src/ ← application code
│ ├─ __init__.py
│ ├─ models.py
│ ├─ threadify.py
│ ├─ classifier.py
│ ├─ api.py
│ └─ config.py ← centralize constants, paths, env var handlers
│
├─ tests/ ← automated unit/integration tests
│ ├─ test_threadify.py
│ └─ test_classifier.py
│
├─ .env.example ← example env-vars file
├─ Dockerfile ← containerize the app for one-command startup
├─ docker-compose.yml ← (if you need multiple services, e.g. Redis)
├─ Makefile ← shortcuts for common commands (test, lint, run)
├─ requirements.txt
├─ README.md ← top-level quickstart & project summary
└─ CHANGELOG.md ← track major changes & version bumps
-
README.md
-
One-paragraph summary of what the service does
-
Prerequisites (Python version, Docker)
-
“Quickstart” commands:
git clone … cd email-threadify-api cp .env.example .env # set your vars docker-compose up --build # or Makefile shortcuts
-
-
docs/setup-guide.md
- Detailed OS-specific setup (virtualenv vs. Docker, installing system deps)
- How to point at real vs. sample data, how to seed training data
-
docs/api-reference.md
-
For each endpoint (
/threadify,/classify):- HTTP method, URL
- Request JSON schema
- Example request & response payload
-
-
docs/architecture.md
-
High-level module diagram:
- “
api.py→threadify.py&classifier.py→ models & embeddings”
- “
-
Data format conventions (what an EmailMessage looks like)
-
-
.env.example
- List all environment variables you use (
EMBED_MODEL=…,FLASK_ENV=production, etc.)
- List all environment variables you use (
-
requirements.txt
- Pin exact versions (
Flask==2.2.3,sentence-transformers==2.2.0, etc.)
- Pin exact versions (
-
Dockerfile / docker-compose.yml
- Let them run
docker-compose upto spin up the API (and any ancillary services) - Ensures “it works on my machine” isn’t a problem
- Let them run
-
Makefile (or
scripts/folder) with targets like:install: # install deps pip install -r requirements.txt lint: # check code style (flake8, isort) flake8 src tests test: # run pytest pytest --cov=src run: # start locally flask run docker-run: # build & start container docker-compose up --build
-
CI Integration
- Include a GitHub Actions / CircleCI config that runs
make lintandmake teston every PR.
- Include a GitHub Actions / CircleCI config that runs
- Type hints on all public functions
- Docstrings in
threadify.pyandclassifier.pyso readers immediately know inputs/outputs - Consistent linting (PEP8) and imports ordering
- A brief CHANGELOG.md to signal v1.0, v1.1, etc., so they can track what’s new.
- In
data/, include a small Enron-like JSON with 3 threads × 4 messages each for easy manual testing. - Possibly a Postman collection or cURL snippets in
docs/so they can hit the API immediately.
- Tag a release (e.g.
v1.0) in GitHub. - Invite your teammate or client as a collaborator on the repo.
- Walk them through: a short meeting to explain the docs folder and key commands.
- Ensure tests pass and the Docker build succeeds on a clean machine.
- Provide any credentials (API keys, model-weights) securely—never commit secrets to Git.
With that structure and those artifacts in place, whoever picks up the project will have everything they need to understand, run, and extend your prototype with minimal friction.