Skip to content

kash2911/versora_4

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 

Repository files navigation

versora_4


1. Clean, Intuitive Directory Structure

email-threadify-api/
│
├─ docs/                         ← high-level documentation  
│   ├─ architecture.md           ← overview of modules & data flow  
│   ├─ api-reference.md          ← endpoint specs (inputs, outputs, examples)  
│   └─ setup-guide.md            ← step-by-step dev & prod setup  
│
├─ data/                         ← sample datasets & fixtures  
│   ├─ enron_sample.json  
│   └─ dummy_threads.json  
│
├─ src/                          ← application code  
│   ├─ __init__.py  
│   ├─ models.py  
│   ├─ threadify.py  
│   ├─ classifier.py  
│   ├─ api.py  
│   └─ config.py                 ← centralize constants, paths, env var handlers  
│
├─ tests/                        ← automated unit/integration tests  
│   ├─ test_threadify.py  
│   └─ test_classifier.py  
│
├─ .env.example                  ← example env-vars file  
├─ Dockerfile                    ← containerize the app for one-command startup  
├─ docker-compose.yml            ← (if you need multiple services, e.g. Redis)  
├─ Makefile                      ← shortcuts for common commands (test, lint, run)  
├─ requirements.txt  
├─ README.md                     ← top-level quickstart & project summary  
└─ CHANGELOG.md                  ← track major changes & version bumps  

2. Essential Documentation

  • README.md

    • One-paragraph summary of what the service does

    • Prerequisites (Python version, Docker)

    • “Quickstart” commands:

      git clone … 
      cd email-threadify-api
      cp .env.example .env        # set your vars
      docker-compose up --build   # or Makefile shortcuts
  • docs/setup-guide.md

    • Detailed OS-specific setup (virtualenv vs. Docker, installing system deps)
    • How to point at real vs. sample data, how to seed training data
  • docs/api-reference.md

    • For each endpoint (/threadify, /classify):

      • HTTP method, URL
      • Request JSON schema
      • Example request & response payload
  • docs/architecture.md

    • High-level module diagram:

      • api.pythreadify.py & classifier.py → models & embeddings”
    • Data format conventions (what an EmailMessage looks like)


3. Environment & Dependency Management

  • .env.example

    • List all environment variables you use (EMBED_MODEL=…, FLASK_ENV=production, etc.)
  • requirements.txt

    • Pin exact versions (Flask==2.2.3, sentence-transformers==2.2.0, etc.)
  • Dockerfile / docker-compose.yml

    • Let them run docker-compose up to spin up the API (and any ancillary services)
    • Ensures “it works on my machine” isn’t a problem

4. Automation & Developer Workflow

  • Makefile (or scripts/ folder) with targets like:

    install:       # install deps
        pip install -r requirements.txt
    
    lint:          # check code style (flake8, isort)
        flake8 src tests
    
    test:          # run pytest
        pytest --cov=src
    
    run:           # start locally
        flask run
    
    docker-run:    # build & start container
        docker-compose up --build
  • CI Integration

    • Include a GitHub Actions / CircleCI config that runs make lint and make test on every PR.

5. Code Hygiene & Style

  • Type hints on all public functions
  • Docstrings in threadify.py and classifier.py so readers immediately know inputs/outputs
  • Consistent linting (PEP8) and imports ordering
  • A brief CHANGELOG.md to signal v1.0, v1.1, etc., so they can track what’s new.

6. Sample Data & “Golden Paths”

  • In data/, include a small Enron-like JSON with 3 threads × 4 messages each for easy manual testing.
  • Possibly a Postman collection or cURL snippets in docs/ so they can hit the API immediately.

7. Final Handoff Checklist

  1. Tag a release (e.g. v1.0) in GitHub.
  2. Invite your teammate or client as a collaborator on the repo.
  3. Walk them through: a short meeting to explain the docs folder and key commands.
  4. Ensure tests pass and the Docker build succeeds on a clean machine.
  5. Provide any credentials (API keys, model-weights) securely—never commit secrets to Git.

With that structure and those artifacts in place, whoever picks up the project will have everything they need to understand, run, and extend your prototype with minimal friction.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published