A PyTorch implementation of Listen, Attend and Spell (LAS) [1], an end-to-end automatic speech recognition framework, which directly converts acoustic features to character sequence using only one nueral network.
- Python3 (Recommend Anaconda)
- PyTorch 0.4.1+
- Kaldi (Just for feature extraction)
pip install -r requirements.txt
cd tools; make KALDI=/path/to/kaldi
- If you want to run
egs/aishell/run.sh
, download aishell dataset for free.
$ cd egs/aishell
and modify aishell data path to your path inrun.sh
.$ bash run.sh
, that's all!
You can change hyper-parameter by $ bash run.sh --parameter_name parameter_value
, egs, $ bash run.sh --stage 3
. See parameter name in egs/aishell/run.sh
before . utils/parse_options.sh
.
$ cd egs/aishell/
$ . ./path.sh
Train
$ train.py -h
Decode
$ recognize.py -h
Workflow of egs/aishell/run.sh
:
- Stage 0: Data Preparation
- Stage 1: Feature Generation
- Stage 2: Dictionary and Json Data Preparation
- Stage 3: Network Training
- Stage 4: Decoding
If you want to visualize your loss, you can use visdom
to do that:
- Open a new terminal in your remote server (recommend tmux) and run
$ visdom
. - Open a new terminal and run
$ bash run.sh --visdom 1 --visdom_id "<any-string>"
or$ train.py ... --visdom 1 --vidsdom_id "<any-string>"
. - Open your browser and type
<your-remote-server-ip>:8097
, egs,127.0.0.1:8097
. - In visdom website, chose
<any-string>
inEnvironment
to see your loss.
Model | CER | Config |
---|---|---|
LSTMP | 9.85 | 4x(1024-512) |
Listen, Attend and Spell | 13.2 | See egs/aishell/run.sh |
[1] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell: A neural network for large vocabulary conversational speech recognition,” in ICASSP 2016. (https://arxiv.org/abs/1508.01211v2)