Skip to content

justicengom/scientisttools

 
 

Repository files navigation

scientisttools : Python library for multidimensional analysis

About scientisttools

scientisttools is a Python package dedicated to multivariate Exploratory Data Analysis and clustering analysis.

Why use scientisttools?

  • It performs classical principal component methods :

    • Principal Components Analysis (PCA)
    • Principal Components Analysis with partial correlation matrix (PartialPCA)
    • Exploratory Factor Analysis (EFA)
    • Classical Multidimensional Scaling (CMDSCALE)
    • Metric and Non - Metric Multidimensional Scaling (MDS)
    • Correspondence Analysis (CA)
    • Multiple Correspondence Analysis (MCA)
    • Factor Analysis of Mixed Data (FAMD)
    • Multiple Factor Analysis (MFA)
    • Multiple Factor Analysis for qualitatives/categoricals variables (MFAQUAL)
    • Multiple Factor Analysis of Mixed Data (MFAMIX)
    • Multiple Factor Analysis of Contingence Tables (MFACT)
  • In some methods, it allowed to add supplementary informations such as supplementary individuals and/or variables.

  • It provides a geometrical point of view, a lot of graphical outputs.

  • It provides efficient implementations, using a scikit-learn API.

Those statistical methods can be used in two ways :

  • as descriptive methods ("datamining approach")
  • as reduction methods in scikit-learn pipelines ("machine learning approach")

scientisttools also performs clustering analysis

  • Clustering analysis:
    • Hierarchical Clustering on Principal Components (HCPC)
    • Variables Hierarchical Clustering Analysis (VARHCA)
    • Variables Hierarchical Clustering Analysis on Principal Components (VARHCPC)
    • Categorical Variables Hierarchical Clustering Analysis (CATVARHCA)

Notebooks are availabled.

Installation

Dependencies

scientisttools requires

numpy>=1.26.4
matplotlib>=3.5.3
scikit-learn>=1.2.2
pandas>=2.2.2
mapply>=0.1.21
plotnine>=0.10.1
plydata>=0.4.3
pingouin>=0.5.3
scientistmetrics>=0.0.3
ggcorrplot>=0.0.2

User installation

You can install scientisttools using pip :

pip install scientisttools

Tutorial are available

Author

Duvérier DJIFACK ZEBAZE (duverierdjifack@gmail.com)

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 65.7%
  • Python 32.5%
  • R 1.8%