|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [ |
| 8 | + { |
| 9 | + "name": "stdout", |
| 10 | + "output_type": "stream", |
| 11 | + "text": [ |
| 12 | + "bits [0 0] --> parity [0]\n", |
| 13 | + "bits [0 1] --> parity [1]\n", |
| 14 | + "bits [1 0] --> parity [1]\n", |
| 15 | + "bits [1 1] --> parity [0]\n" |
| 16 | + ] |
| 17 | + } |
| 18 | + ], |
| 19 | + "source": [ |
| 20 | + "import numpy as np\n", |
| 21 | + "\n", |
| 22 | + "np.random.seed(0)\n", |
| 23 | + "\n", |
| 24 | + "# bits are our inputs\n", |
| 25 | + "X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])\n", |
| 26 | + "\n", |
| 27 | + "# parities are our labels\n", |
| 28 | + "Y = np.array([[0], [1], [1], [0]])\n", |
| 29 | + "\n", |
| 30 | + "for i, bits in enumerate(X):\n", |
| 31 | + " print(f'bits {bits} --> parity {Y[i]}')" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "code", |
| 36 | + "execution_count": 2, |
| 37 | + "metadata": {}, |
| 38 | + "outputs": [ |
| 39 | + { |
| 40 | + "name": "stdout", |
| 41 | + "output_type": "stream", |
| 42 | + "text": [ |
| 43 | + "delta sigmoid [[0.25 ]\n", |
| 44 | + " [0.19661193]\n", |
| 45 | + " [0.19661193]\n", |
| 46 | + " [0.25 ]]\n", |
| 47 | + "delta sigmoid analytical [[0.25000002]\n", |
| 48 | + " [0.19661195]\n", |
| 49 | + " [0.19661195]\n", |
| 50 | + " [0.25000002]]\n" |
| 51 | + ] |
| 52 | + } |
| 53 | + ], |
| 54 | + "source": [ |
| 55 | + "def sigmoid(x):\n", |
| 56 | + " return 1 / (1 + np.exp(-x))\n", |
| 57 | + "\n", |
| 58 | + "def delta_sigmoid(x):\n", |
| 59 | + " # to derive use the +1 trick from http://cs231n.github.io/optimization-2/\n", |
| 60 | + " return sigmoid(x) * (1 - sigmoid(x))\n", |
| 61 | + "\n", |
| 62 | + "def analytical_gradient(f, x):\n", |
| 63 | + " h = 1e-9\n", |
| 64 | + " return (f(x + h) - f(x)) / h\n", |
| 65 | + "\n", |
| 66 | + "print('delta sigmoid', delta_sigmoid(Y))\n", |
| 67 | + "print('delta sigmoid analytical', analytical_gradient(sigmoid, Y))" |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "code", |
| 72 | + "execution_count": 3, |
| 73 | + "metadata": {}, |
| 74 | + "outputs": [ |
| 75 | + { |
| 76 | + "name": "stdout", |
| 77 | + "output_type": "stream", |
| 78 | + "text": [ |
| 79 | + "loss 0.14451072667400197\n", |
| 80 | + "loss 0.007930633168167129\n", |
| 81 | + "loss 0.0031754754752917323\n", |
| 82 | + "loss 0.0021824385490060365\n" |
| 83 | + ] |
| 84 | + } |
| 85 | + ], |
| 86 | + "source": [ |
| 87 | + "# X [4,2]\n", |
| 88 | + "input_dim = X.shape[-1]\n", |
| 89 | + "# Y [4,1]\n", |
| 90 | + "output_dim = Y.shape[-1]\n", |
| 91 | + "hidden_units = 2\n", |
| 92 | + "lr = 0.1\n", |
| 93 | + "\n", |
| 94 | + "# [2,2]\n", |
| 95 | + "Whidden = np.random.uniform(size=(input_dim, hidden_units)) # hidden layer\n", |
| 96 | + "\n", |
| 97 | + "# [2,1]\n", |
| 98 | + "Woutput = np.random.uniform(size=(hidden_units, output_dim)) # output layer\n", |
| 99 | + "\n", |
| 100 | + "for step in range(10000):\n", |
| 101 | + " # forward pass\n", |
| 102 | + " # loss = loss(output(activation(hidden(X))))\n", |
| 103 | + "\n", |
| 104 | + " # hidden(X) [4,2]\n", |
| 105 | + " hidden = X.dot(Whidden)\n", |
| 106 | + " \n", |
| 107 | + " # activation(hidden) [4,2]\n", |
| 108 | + " activation = sigmoid(hidden)\n", |
| 109 | + "\n", |
| 110 | + " # output(activation) [4,2]x[2,1] -> [4,1]\n", |
| 111 | + " output = activation.dot(Woutput)\n", |
| 112 | + "\n", |
| 113 | + " # loss(output) [4,1]\n", |
| 114 | + " loss = 0.5 * (output - Y)**2\n", |
| 115 | + " if step % 2500 == 0:\n", |
| 116 | + " print('loss', np.mean(loss))\n", |
| 117 | + " \n", |
| 118 | + " # backward pass\n", |
| 119 | + " # loss'(output) [4,1]\n", |
| 120 | + " dloss_output = output - Y\n", |
| 121 | + " \n", |
| 122 | + " # loss'(activation) = loss'(output) * output'(activation)\n", |
| 123 | + " # [4,1]x[1,2] -> [4,2]\n", |
| 124 | + " dloss_activation = dloss_output.dot(Woutput.T)\n", |
| 125 | + "\n", |
| 126 | + " # loss'(hidden) = loss'(activation) * activation'(hidden)\n", |
| 127 | + " # [4,2]*[4,2] -> [4,2]\n", |
| 128 | + " dloss_hidden = dloss_activation * delta_sigmoid(hidden)\n", |
| 129 | + "\n", |
| 130 | + " # Take a small step in the opposite direction of the gradient \n", |
| 131 | + " \n", |
| 132 | + " # loss'(Woutput) = loss'(output) * output'(Woutput)\n", |
| 133 | + " # [2,4]x[4,1] -> [2,1]\n", |
| 134 | + " dloss_woutput = activation.T.dot(dloss_output)\n", |
| 135 | + " Woutput -= dloss_woutput * lr\n", |
| 136 | + "\n", |
| 137 | + " # loss'(Whidden) = loss'(hidden) * hidden'(Whidden)\n", |
| 138 | + " # [2,4]x[4,2] -> [2,2]\n", |
| 139 | + " dloss_whidden = X.T.dot(dloss_hidden) \n", |
| 140 | + " Whidden -= dloss_whidden * lr" |
| 141 | + ] |
| 142 | + }, |
| 143 | + { |
| 144 | + "cell_type": "code", |
| 145 | + "execution_count": 4, |
| 146 | + "metadata": {}, |
| 147 | + "outputs": [ |
| 148 | + { |
| 149 | + "name": "stdout", |
| 150 | + "output_type": "stream", |
| 151 | + "text": [ |
| 152 | + "prediction [-0.08500212] -> label [0]\n", |
| 153 | + "prediction [0.98169372] -> label [1]\n", |
| 154 | + "prediction [0.98169457] -> label [1]\n", |
| 155 | + "prediction [0.07744216] -> label [0]\n" |
| 156 | + ] |
| 157 | + } |
| 158 | + ], |
| 159 | + "source": [ |
| 160 | + "for i, prediction in enumerate(output):\n", |
| 161 | + " print(f'prediction {prediction} -> label {Y[i]}')" |
| 162 | + ] |
| 163 | + }, |
| 164 | + { |
| 165 | + "cell_type": "code", |
| 166 | + "execution_count": null, |
| 167 | + "metadata": {}, |
| 168 | + "outputs": [], |
| 169 | + "source": [] |
| 170 | + } |
| 171 | + ], |
| 172 | + "metadata": { |
| 173 | + "kernelspec": { |
| 174 | + "display_name": "Python 3", |
| 175 | + "language": "python", |
| 176 | + "name": "python3" |
| 177 | + }, |
| 178 | + "language_info": { |
| 179 | + "codemirror_mode": { |
| 180 | + "name": "ipython", |
| 181 | + "version": 3 |
| 182 | + }, |
| 183 | + "file_extension": ".py", |
| 184 | + "mimetype": "text/x-python", |
| 185 | + "name": "python", |
| 186 | + "nbconvert_exporter": "python", |
| 187 | + "pygments_lexer": "ipython3", |
| 188 | + "version": "3.6.3" |
| 189 | + } |
| 190 | + }, |
| 191 | + "nbformat": 4, |
| 192 | + "nbformat_minor": 2 |
| 193 | +} |
0 commit comments