|
2 | 2 | "cells": [
|
3 | 3 | {
|
4 | 4 | "cell_type": "code",
|
5 |
| - "execution_count": 2, |
6 |
| - "metadata": {}, |
7 |
| - "outputs": [], |
8 |
| - "source": [ |
9 |
| - "import numpy as np" |
10 |
| - ] |
11 |
| - }, |
12 |
| - { |
13 |
| - "cell_type": "code", |
14 |
| - "execution_count": 3, |
| 5 | + "execution_count": 1, |
15 | 6 | "metadata": {},
|
16 |
| - "outputs": [], |
| 7 | + "outputs": [ |
| 8 | + { |
| 9 | + "name": "stdout", |
| 10 | + "output_type": "stream", |
| 11 | + "text": [ |
| 12 | + "bits [0 0] --> parity [0]\n", |
| 13 | + "bits [0 1] --> parity [1]\n", |
| 14 | + "bits [1 0] --> parity [1]\n", |
| 15 | + "bits [1 1] --> parity [0]\n" |
| 16 | + ] |
| 17 | + } |
| 18 | + ], |
17 | 19 | "source": [
|
| 20 | + "import numpy as np\n", |
| 21 | + "\n", |
| 22 | + "np.random.seed(0)\n", |
| 23 | + "\n", |
18 | 24 | "# bits are our inputs\n",
|
19 | 25 | "X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])\n",
|
20 | 26 | "\n",
|
21 | 27 | "# parities are our labels\n",
|
22 |
| - "Y = np.array([0, 1, 1, 0])" |
| 28 | + "Y = np.array([[0], [1], [1], [0]])\n", |
| 29 | + "\n", |
| 30 | + "for i, bits in enumerate(X):\n", |
| 31 | + " print(f'bits {bits} --> parity {Y[i]}')" |
23 | 32 | ]
|
24 | 33 | },
|
25 | 34 | {
|
26 | 35 | "cell_type": "code",
|
27 |
| - "execution_count": 4, |
| 36 | + "execution_count": 2, |
28 | 37 | "metadata": {},
|
29 | 38 | "outputs": [
|
30 | 39 | {
|
31 | 40 | "name": "stdout",
|
32 | 41 | "output_type": "stream",
|
33 | 42 | "text": [
|
34 |
| - "bits [0 0] --> parity 0\n", |
35 |
| - "bits [0 1] --> parity 1\n", |
36 |
| - "bits [1 0] --> parity 1\n", |
37 |
| - "bits [1 1] --> parity 0\n" |
| 43 | + "delta sigmoid [[0.25 ]\n", |
| 44 | + " [0.19661193]\n", |
| 45 | + " [0.19661193]\n", |
| 46 | + " [0.25 ]]\n", |
| 47 | + "delta sigmoid analytical [[0.25000002]\n", |
| 48 | + " [0.19661195]\n", |
| 49 | + " [0.19661195]\n", |
| 50 | + " [0.25000002]]\n" |
38 | 51 | ]
|
39 | 52 | }
|
40 | 53 | ],
|
41 | 54 | "source": [
|
42 |
| - "for i, bits in enumerate(X):\n", |
43 |
| - " print(f'bits {bits} --> parity {Y[i]}')" |
44 |
| - ] |
45 |
| - }, |
46 |
| - { |
47 |
| - "cell_type": "code", |
48 |
| - "execution_count": 5, |
49 |
| - "metadata": {}, |
50 |
| - "outputs": [], |
51 |
| - "source": [ |
52 |
| - "def identity(x):\n", |
53 |
| - " return x\n", |
54 |
| - "\n", |
55 | 55 | "def sigmoid(x):\n",
|
56 |
| - " return 1 / (1 + np.exp(-x))" |
| 56 | + " return 1 / (1 + np.exp(-x))\n", |
| 57 | + "\n", |
| 58 | + "def delta_sigmoid(x):\n", |
| 59 | + " # to derive use the +1 trick from http://cs231n.github.io/optimization-2/\n", |
| 60 | + " return sigmoid(x) * (1 - sigmoid(x))\n", |
| 61 | + "\n", |
| 62 | + "def analytical_gradient(f, x):\n", |
| 63 | + " h = 1e-9\n", |
| 64 | + " return (f(x + h) - f(x)) / h\n", |
| 65 | + "\n", |
| 66 | + "print('delta sigmoid', delta_sigmoid(Y))\n", |
| 67 | + "print('delta sigmoid analytical', analytical_gradient(sigmoid, Y))" |
57 | 68 | ]
|
58 | 69 | },
|
59 | 70 | {
|
60 | 71 | "cell_type": "code",
|
61 |
| - "execution_count": 8, |
| 72 | + "execution_count": 3, |
62 | 73 | "metadata": {},
|
63 |
| - "outputs": [], |
| 74 | + "outputs": [ |
| 75 | + { |
| 76 | + "name": "stdout", |
| 77 | + "output_type": "stream", |
| 78 | + "text": [ |
| 79 | + "loss 0.14451072667400197\n", |
| 80 | + "loss 0.007930633168167129\n", |
| 81 | + "loss 0.0031754754752917323\n", |
| 82 | + "loss 0.0021824385490060365\n" |
| 83 | + ] |
| 84 | + } |
| 85 | + ], |
64 | 86 | "source": [
|
65 |
| - "def build_layers(input_dim, hidden_units, activations):\n", |
66 |
| - " layers = [] \n", |
67 |
| - " \n", |
68 |
| - " for i, num_units in enumerate(hidden_units):\n", |
69 |
| - " layers.append({\n", |
70 |
| - " 'weights': np.random.uniform(size=(input_dim, num_units)),\n", |
71 |
| - " 'bias': np.zeros((1, num_units)),\n", |
72 |
| - " 'activation': activations[i],\n", |
73 |
| - " })\n", |
74 |
| - " \n", |
75 |
| - " # the next layers input_dim will be this layers num_units\n", |
76 |
| - " # [rows, this_num_units] X [this_num_units, next_num_units] -> [rows, next_num_units]\n", |
77 |
| - " input_dim = num_units\n", |
| 87 | + "# X [4,2]\n", |
| 88 | + "input_dim = X.shape[-1]\n", |
| 89 | + "# Y [4,1]\n", |
| 90 | + "output_dim = Y.shape[-1]\n", |
| 91 | + "hidden_units = 2\n", |
| 92 | + "lr = 0.1\n", |
| 93 | + "\n", |
| 94 | + "# [2,2]\n", |
| 95 | + "Whidden = np.random.uniform(size=(input_dim, hidden_units)) # hidden layer\n", |
| 96 | + "\n", |
| 97 | + "# [2,1]\n", |
| 98 | + "Woutput = np.random.uniform(size=(hidden_units, output_dim)) # output layer\n", |
| 99 | + "\n", |
| 100 | + "for step in range(10000):\n", |
| 101 | + " # forward pass\n", |
| 102 | + " # loss = loss(output(activation(hidden(X))))\n", |
| 103 | + "\n", |
| 104 | + " # hidden(X) [4,2]\n", |
| 105 | + " hidden = X.dot(Whidden)\n", |
| 106 | + " \n", |
| 107 | + " # activation(hidden) [4,2]\n", |
| 108 | + " activation = sigmoid(hidden)\n", |
| 109 | + "\n", |
| 110 | + " # output(activation) [4,2]x[2,1] -> [4,1]\n", |
| 111 | + " output = activation.dot(Woutput)\n", |
| 112 | + "\n", |
| 113 | + " # loss(output) [4,1]\n", |
| 114 | + " loss = 0.5 * (output - Y)**2\n", |
| 115 | + " if step % 2500 == 0:\n", |
| 116 | + " print('loss', np.mean(loss))\n", |
| 117 | + " \n", |
| 118 | + " # backward pass\n", |
| 119 | + " # loss'(output) [4,1]\n", |
| 120 | + " dloss_output = output - Y\n", |
| 121 | + " \n", |
| 122 | + " # loss'(activation) = loss'(output) * output'(activation)\n", |
| 123 | + " # [4,1]x[1,2] -> [4,2]\n", |
| 124 | + " dloss_activation = dloss_output.dot(Woutput.T)\n", |
| 125 | + "\n", |
| 126 | + " # loss'(hidden) = loss'(activation) * activation'(hidden)\n", |
| 127 | + " # [4,2]*[4,2] -> [4,2]\n", |
| 128 | + " dloss_hidden = dloss_activation * delta_sigmoid(hidden)\n", |
| 129 | + "\n", |
| 130 | + " # Take a small step in the opposite direction of the gradient \n", |
78 | 131 | " \n",
|
79 |
| - " return layers\n", |
| 132 | + " # loss'(Woutput) = loss'(output) * output'(Woutput)\n", |
| 133 | + " # [2,4]x[4,1] -> [2,1]\n", |
| 134 | + " dloss_woutput = activation.T.dot(dloss_output)\n", |
| 135 | + " Woutput -= dloss_woutput * lr\n", |
80 | 136 | "\n",
|
81 |
| - "def forward(x, layers):\n", |
82 |
| - " for layer in layers:\n", |
83 |
| - " x = x.dot(layer['weights']) + layer['bias']\n", |
84 |
| - " x = layer['activation'](x)\n", |
85 |
| - " return x" |
| 137 | + " # loss'(Whidden) = loss'(hidden) * hidden'(Whidden)\n", |
| 138 | + " # [2,4]x[4,2] -> [2,2]\n", |
| 139 | + " dloss_whidden = X.T.dot(dloss_hidden) \n", |
| 140 | + " Whidden -= dloss_whidden * lr" |
86 | 141 | ]
|
87 | 142 | },
|
88 | 143 | {
|
89 | 144 | "cell_type": "code",
|
90 |
| - "execution_count": 9, |
| 145 | + "execution_count": 4, |
91 | 146 | "metadata": {},
|
92 | 147 | "outputs": [
|
93 | 148 | {
|
94 |
| - "data": { |
95 |
| - "text/plain": [ |
96 |
| - "array([[0.51424762],\n", |
97 |
| - " [0.51508232],\n", |
98 |
| - " [0.51745592],\n", |
99 |
| - " [0.51824855]])" |
100 |
| - ] |
101 |
| - }, |
102 |
| - "execution_count": 9, |
103 |
| - "metadata": {}, |
104 |
| - "output_type": "execute_result" |
| 149 | + "name": "stdout", |
| 150 | + "output_type": "stream", |
| 151 | + "text": [ |
| 152 | + "prediction [-0.08500212] -> label [0]\n", |
| 153 | + "prediction [0.98169372] -> label [1]\n", |
| 154 | + "prediction [0.98169457] -> label [1]\n", |
| 155 | + "prediction [0.07744216] -> label [0]\n" |
| 156 | + ] |
105 | 157 | }
|
106 | 158 | ],
|
107 | 159 | "source": [
|
108 |
| - "layers = build_layers(X.shape[-1], hidden_units=[2, 1], activations=[sigmoid, sigmoid])\n", |
109 |
| - "yhat = forward(X, layers)\n", |
110 |
| - "\n", |
111 |
| - "yhat" |
| 160 | + "for i, prediction in enumerate(output):\n", |
| 161 | + " print(f'prediction {prediction} -> label {Y[i]}')" |
112 | 162 | ]
|
113 | 163 | },
|
114 | 164 | {
|
|
0 commit comments