Skip to content

πŸͺ¨ Bedrock Wrapper is an npm package that simplifies the integration of existing OpenAI-compatible API objects with AWS Bedrock's serverless inference LLMs.

License

Notifications You must be signed in to change notification settings

jparkerweb/bedrock-wrapper

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸͺ¨ Bedrock Wrapper

Bedrock Wrapper is an npm package that simplifies the integration of existing OpenAI-compatible API objects with AWS Bedrock's serverless inference LLMs. Follow the steps below to integrate into your own application, or alternativly use the πŸ”€ Bedrock Proxy Endpoint project to spin up your own custom OpenAI server endpoint for even easier inference (using the standard baseUrl, and apiKey params).

bedrock-wrapper


Maintained by

eQuill Labs

Install

  • install package: npm install bedrock-wrapper

Usage

  1. import bedrockWrapper

    import { bedrockWrapper } from "bedrock-wrapper";
  2. create an awsCreds object and fill in your AWS credentials

    const awsCreds = {
        region: AWS_REGION,
        accessKeyId: AWS_ACCESS_KEY_ID,
        secretAccessKey: AWS_SECRET_ACCESS_KEY,
    };
  3. clone your openai chat completions object into openaiChatCompletionsCreateObject or create a new one and edit the values

    const openaiChatCompletionsCreateObject = {
        "messages": messages,
        "model": "Claude-4-5-Sonnet",
        "max_tokens": LLM_MAX_GEN_TOKENS,
        "stream": true,
        "temperature": LLM_TEMPERATURE,
        "stop_sequences": ["STOP", "END"], // Optional: sequences that will stop generation
    };

    the messages variable should be in openai's role/content format (not all models support system prompts)

    messages = [
        {
            role: "system",
            content: "You are a helpful AI assistant that follows instructions extremely well. Answer the user questions accurately. Think step by step before answering the question. You will get a $100 tip if you provide the correct answer.",
        },
        {
            role: "user",
            content: "Describe why openai api standard used by lots of serverless LLM api providers is better than aws bedrock invoke api offered by aws bedrock. Limit your response to five sentences.",
        },
        {
            role: "assistant",
            content: "",
        },
    ]

    the model value should be the corresponding modelName value in the bedrock_models section below (see Supported Models below)

  4. call the bedrockWrapper function and pass in the previously defined awsCreds and openaiChatCompletionsCreateObject objects

    // create a variable to hold the complete response
    let completeResponse = "";
    // invoke the streamed bedrock api response
    for await (const chunk of bedrockWrapper(awsCreds, openaiChatCompletionsCreateObject)) {
        completeResponse += chunk;
        // ---------------------------------------------------
        // -- each chunk is streamed as it is received here --
        // ---------------------------------------------------
        process.stdout.write(chunk); // β‡  do stuff with the streamed chunk
    }
    // console.log(`\n\completeResponse:\n${completeResponse}\n`); // β‡  optional do stuff with the complete response returned from the API reguardless of stream or not

    if calling the unstreamed version you can call bedrockWrapper like this

    // create a variable to hold the complete response
    let completeResponse = "";
    if (!openaiChatCompletionsCreateObject.stream){ // invoke the unstreamed bedrock api response
        const response = await bedrockWrapper(awsCreds, openaiChatCompletionsCreateObject);
        for await (const data of response) {
            completeResponse += data;
        }
        // ----------------------------------------------------
        // -- unstreamed complete response is available here --
        // ----------------------------------------------------
        console.log(`\n\completeResponse:\n${completeResponse}\n`); // β‡  do stuff with the complete response
    }
  5. NEW: Using the Converse API (optional)

    You can now optionally use AWS Bedrock's Converse API instead of the Invoke API by passing useConverseAPI: true in the options parameter:

    // Use the Converse API for unified request/response format across all models
    for await (const chunk of bedrockWrapper(awsCreds, openaiChatCompletionsCreateObject, { useConverseAPI: true })) {
        completeResponse += chunk;
        process.stdout.write(chunk);
    }

    The Converse API provides:

    • Consistent API: Single request/response format across all models
    • Simplified conversation management: Better handling of multi-turn conversations
    • System prompts: Cleaner separation of system instructions
    • Tool use support: Native support for function calling (where supported)
    • Unified multimodal: Consistent handling of text and image inputs

    Note: Some models only support the Converse API and will automatically use it regardless of the useConverseAPI flag:

    • DeepSeek-V3.1

Supported Models

modelName AWS Model Id Image
Claude-3-5-Haiku us.anthropic.claude-3-5-haiku-20241022-v1:0 ❌
Claude-3-5-Sonnet us.anthropic.claude-3-5-sonnet-20240620-v1:0 βœ…
Claude-3-5-Sonnet-v2 us.anthropic.claude-3-5-sonnet-20241022-v2:0 βœ…
Claude-3-7-Sonnet us.anthropic.claude-3-7-sonnet-20250219-v1:0 βœ…
Claude-3-7-Sonnet-Thinking us.anthropic.claude-3-7-sonnet-20250219-v1:0 βœ…
Claude-3-Haiku us.anthropic.claude-3-haiku-20240307-v1:0 βœ…
Claude-4-Opus us.anthropic.claude-opus-4-20250514-v1:0 βœ…
Claude-4-Opus-Thinking us.anthropic.claude-opus-4-20250514-v1:0 βœ…
Claude-4-Sonnet us.anthropic.claude-sonnet-4-20250514-v1:0 βœ…
Claude-4-Sonnet-Thinking us.anthropic.claude-sonnet-4-20250514-v1:0 βœ…
Claude-4-1-Opus us.anthropic.claude-opus-4-1-20250805-v1:0 βœ…
Claude-4-1-Opus-Thinking us.anthropic.claude-opus-4-1-20250805-v1:0 βœ…
Claude-4-5-Haiku global.anthropic.claude-haiku-4-5-20251001-v1:0 βœ…
Claude-4-5-Haiku-Thinking global.anthropic.claude-haiku-4-5-20251001-v1:0 βœ…
Claude-4-5-Opus global.anthropic.claude-opus-4-5-20251101-v1:0 βœ…
Claude-4-5-Opus-Thinking global.anthropic.claude-opus-4-5-20251101-v1:0 βœ…
Claude-4-5-Sonnet us.anthropic.claude-sonnet-4-5-20250929-v1:0 βœ…
Claude-4-5-Sonnet-Thinking us.anthropic.claude-sonnet-4-5-20250929-v1:0 βœ…
DeepSeek-R1 us.deepseek.r1-v1:0 ❌
DeepSeek-V3.1 deepseek.v3-v1:0 ❌
Gemma-3-4b google.gemma-3-4b-it βœ…
Gemma-3-12b google.gemma-3-12b-it βœ…
Gemma-3-27b google.gemma-3-27b-it βœ…
GPT-OSS-120B openai.gpt-oss-120b-1:0 ❌
GPT-OSS-120B-Thinking openai.gpt-oss-120b-1:0 ❌
GPT-OSS-20B openai.gpt-oss-20b-1:0 ❌
GPT-OSS-20B-Thinking openai.gpt-oss-20b-1:0 ❌
Kimi-K2 moonshot.kimi-k2-thinking ❌
Kimi-K2-Thinking moonshot.kimi-k2-thinking ❌
Llama-3-8b meta.llama3-8b-instruct-v1:0 ❌
Llama-3-70b meta.llama3-70b-instruct-v1:0 ❌
Llama-3-1-8b us.meta.llama3-1-8b-instruct-v1:0 ❌
Llama-3-1-70b us.meta.llama3-1-70b-instruct-v1:0 ❌
Llama-3-1-405b meta.llama3-1-405b-instruct-v1:0 ❌
Llama-3-2-1b us.meta.llama3-2-1b-instruct-v1:0 ❌
Llama-3-2-3b us.meta.llama3-2-3b-instruct-v1:0 ❌
Llama-3-2-11b us.meta.llama3-2-11b-instruct-v1:0 ❌
Llama-3-2-90b us.meta.llama3-2-90b-instruct-v1:0 ❌
Llama-3-3-70b us.meta.llama3-3-70b-instruct-v1:0 ❌
Magistral-Small-2509 mistral.magistral-small-2509 ❌
MiniMax-M2 minimax.minimax-m2 ❌
Ministral-3-3b mistral.ministral-3-3b-instruct βœ…
Ministral-3-8b mistral.ministral-3-8b-instruct βœ…
Ministral-3-14b mistral.ministral-3-14b-instruct βœ…
Mistral-7b mistral.mistral-7b-instruct-v0:2 ❌
Mistral-Large mistral.mistral-large-2402-v1:0 ❌
Mistral-Large-3 mistral.mistral-large-3-675b-instruct βœ…
Mixtral-8x7b mistral.mixtral-8x7b-instruct-v0:1 ❌
Nova-2-Lite us.amazon.nova-2-lite-v1:0 βœ…
Nova-Micro us.amazon.nova-micro-v1:0 ❌
Nova-Lite us.amazon.nova-lite-v1:0 βœ…
Nova-Pro us.amazon.nova-pro-v1:0 βœ…
Qwen3-32B qwen.qwen3-32b-v1:0 ❌
Qwen3-235B-A22B-2507 qwen.qwen3-235b-a22b-2507-v1:0 ❌
Qwen3-Coder-30B-A3B qwen.qwen3-coder-30b-a3b-v1:0 ❌
Qwen3-Coder-480B-A35B qwen.qwen3-coder-480b-a35b-v1:0 ❌
Qwen3-Next-80B-A3B qwen.qwen3-next-80b-a3b ❌

To return the list progrmatically you can import and call listBedrockWrapperSupportedModels:

import { listBedrockWrapperSupportedModels } from 'bedrock-wrapper';
console.log(`\nsupported models:\n${JSON.stringify(await listBedrockWrapperSupportedModels())}\n`);

Additional Bedrock model support can be added.
Please modify the bedrock_models.js file and submit a PR πŸ† or create an Issue.


Thinking Models

Some models support extended reasoning capabilities through "thinking mode". These models include:

  • Claude models: Claude-4-5-Opus-Thinking, Claude-4-1-Opus-Thinking, Claude-4-Opus-Thinking, Claude-4-5-Sonnet-Thinking, Claude-4-5-Haiku-Thinking, Claude-4-Sonnet-Thinking, Claude-3-7-Sonnet-Thinking
  • GPT-OSS models: GPT-OSS-120B-Thinking, GPT-OSS-20B-Thinking
  • Kimi models: Kimi-K2-Thinking (preserves reasoning tags in output)

To use thinking mode and see the model's reasoning process, set include_thinking_data: true in your request:

const openaiChatCompletionsCreateObject = {
    "messages": messages,
    "model": "Claude-4-5-Sonnet-Thinking",
    "max_tokens": 4000,
    "stream": true,
    "temperature": 1.0, // Thinking models require temperature of 1.0
    "include_thinking_data": true // Enable thinking output
};

let completeResponse = "";
for await (const chunk of bedrockWrapper(awsCreds, openaiChatCompletionsCreateObject)) {
    completeResponse += chunk;
    process.stdout.write(chunk); // Shows both thinking and response
}

Features:

  • Thinking content appears in <think>...</think> tags for Claude models
  • Thinking content appears in <reasoning>...</reasoning> tags for GPT-OSS models
  • Temperature is automatically set to 1.0 for optimal thinking performance
  • Budget tokens are automatically calculated based on max_tokens

Image Support

For models with image support (Claude 4+ series including Claude 4.5 Opus, Claude 4.5 Sonnet, Claude 4.5 Haiku, Claude 3.7 Sonnet, Claude 3.5 Sonnet, Claude 3 Haiku, Nova Pro, Nova Lite, Nova 2 Lite, Mistral Large 3, Ministral 3 series, and Gemma 3 series), you can include images in your messages using the following format (not all models support system prompts):

messages = [
    {
        role: "system",
        content: "You are a helpful AI assistant that can analyze images.",
    },
    {
        role: "user",
        content: [
            { type: "text", text: "What's in this image?" },
            { 
                type: "image_url", 
                image_url: {
                    url: "..." // base64 encoded image
                }
            }
        ]
    }
]

You can also use a direct URL to an image instead of base64 encoding:

messages = [
    {
        role: "user",
        content: [
            { type: "text", text: "Describe this image in detail." },
            { 
                type: "image_url", 
                image_url: {
                    url: "https://example.com/path/to/image.jpg" // direct URL to image
                }
            }
        ]
    }
]

You can include multiple images in a single message by adding more image_url objects to the content array.


Stop Sequences

Stop sequences are custom text sequences that cause the model to stop generating text. This is useful for controlling where the model stops its response.

const openaiChatCompletionsCreateObject = {
    "messages": messages,
    "model": "Claude-3-5-Sonnet",
    "max_tokens": 100,
    "stop_sequences": ["STOP", "END", "\n\n"], // Array of stop sequences
    // OR use single string format:
    // "stop": "STOP"
};

Model Support:

  • βœ… Claude models: Fully supported (up to 8,191 sequences)
  • βœ… Nova models: Fully supported (up to 4 sequences)
  • βœ… GPT-OSS models: Fully supported
  • βœ… Mistral models: Fully supported (up to 10 sequences)
  • βœ… Qwen models: Fully supported
  • βœ… Gemma models: Fully supported
  • βœ… Kimi models: Fully supported
  • βœ… MiniMax models: Fully supported
  • ❌ Llama models: Not supported (AWS Bedrock limitation)

Features:

  • Compatible with OpenAI's stop parameter (single string or array)
  • Also accepts stop_sequences parameter for explicit usage
  • Automatic conversion between string and array formats
  • Model-specific parameter mapping handled automatically

Example Usage:

// Stop generation when model tries to output "7"
const result = await bedrockWrapper(awsCreds, {
    messages: [{ role: "user", content: "Count from 1 to 10" }],
    model: "Claude-3-5-Sonnet",  // Use Claude, Nova, Mistral, or Qwen models
    stop_sequences: ["7"]
});
// Response: "1, 2, 3, 4, 5, 6," (stops before "7")

// Note: Llama models will ignore stop sequences due to AWS Bedrock limitations

Parameter Restrictions

Some AWS Bedrock models have specific parameter restrictions that are automatically handled by the wrapper:

Claude 4+ Models (Temperature/Top-P Mutual Exclusion)

Affected Models:

  • Claude-4-5-Opus & Claude-4-5-Opus-Thinking
  • Claude-4-5-Sonnet & Claude-4-5-Sonnet-Thinking
  • Claude-4-5-Haiku & Claude-4-5-Haiku-Thinking
  • Claude-4-Sonnet & Claude-4-Sonnet-Thinking
  • Claude-4-Opus & Claude-4-Opus-Thinking
  • Claude-4-1-Opus & Claude-4-1-Opus-Thinking

πŸ§ͺ Testing

The package includes comprehensive test suites to verify functionality:

# Test all models with the Both APIs (Comparison)
npm run test

# Test all models with the Invoke API
npm run test:invoke

# Test all models with the Converse API
npm run test:converse

# Test vision/multimodal capabilities with Both APIs (Comparison)
npm run test-vision

# Test vision/multimodal capabilities with Invoke API
npm run test-vision:invoke

# Test vision/multimodal capabilities with Converse API
npm run test-vision:converse

# Test stop sequences functionality with Both APIs (Comparison)
npm run test-stop

# Test stop sequences functionality with Invoke API
npm run test-stop:invoke

# Test stop sequences functionality with Converse API
npm run test-stop:converse

# Test Converse API specifically
npm run test-converse

# Run all test suites
npm run test:all

# Interactive testing
npm run interactive

πŸ“’ P.S.

In case you missed it at the beginning of this doc, for an even easier setup, use the πŸ”€ Bedrock Proxy Endpoint project to spin up your own custom OpenAI server endpoint (using the standard baseUrl, and apiKey params).

bedrock-proxy-endpoing


πŸ“š References


Please consider sending me a tip to support my work πŸ˜€

About

πŸͺ¨ Bedrock Wrapper is an npm package that simplifies the integration of existing OpenAI-compatible API objects with AWS Bedrock's serverless inference LLMs.

Topics

Resources

License

Stars

Watchers

Forks

Sponsor this project

Contributors 5