Skip to content
/ DUA Public

The Norm Must Go On: Dynamic Unsupervised Domain Adaptation by Normalization (CVPR 2022)

Notifications You must be signed in to change notification settings

jmiemirza/DUA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DUA: Dynamic Unsupervised Adaptation (CVPR 2022)

This is the official repository for our paper: The Norm Must Go On: Dynamic Unsupervised Domain Adaptation by Normalization

DUA is an extremely simple method which only adapts the (1st and 2nd order) statistics of the Batch Normalization layer in an online manner to adapt to the out-of-distribution test data at test-time. Adapting only the statistics for Unsupervised Domain Adaptation makes DUA extremely fast and computation efficient. Moreover, DUA requires less than 1% of data from the target domain and no back propagation to achieve competitive (and often state-of-the-art) results when compared to strong baselines.

Short explanatory video about DUA is hosted here.

Installation

  1. git clone this repository.
  2. pip install -r requirements.txt to install required packages

Running Experiments

Before starting with running the experiments, please prepare the datasets through the instructions listed here.

We provide code for reproducing CIFAR-10C / ImageNet-C / KITTI results. These experiments can be run through the following example commands.

CIFAR-10C (WRN-40-2)

For running this experiment first download the AugMix pre-trained WRN-40-2 Checkpoint.

python main.py --dataset cifar10 --model wrn --ckpt_path path/to/checkpoint.pt --dataroot root/path/for/cifar-10C

WRN - Results Cifar10C (Level-5 Severity)

data samples used mean error gauss_noise shot_noise impulse_noise defocus_blur glass_blur motion_blur zoom_blur snow frost fog brightness contrast elastic_trans pixelate jpeg
source 10000 18.3 28.8 22.9 26.2 9.5 20.6 10.6 9.3 14.2 15.3 17.5 7.6 20.9 14.7 41.3 14.7
tent 10000 12.3 15.8 13.5 18.7 8.1 18.7 9.1 8.0 10.3 10.8 11.7 6.7 11.6 14.1 11.7 15.2
dua 80 12.1 15.4 13.4 17.3 8.0 18.0 9.1 7.7 10.8 10.8 12.1 6.6 10.9 13.6 13.0 14.3

ImageNet-C (ResNet-18)

python main.py --dataset imagenet --model res18 --dataroot root/path/for/imagenet-C

KITTI (YOLOv3)

python main.py --dataset kitti --dataroot root/path/for/kitti

This will first train the network on the original KITTI dataset and then adapt separately to Fog and Rain. The current hyper-parameters are set to the default values used in the DUA paper, to experiment with other settings please refer to main.py.

To cite us:

@InProceedings{mirza2022dua,
    author    = {Mirza, M. Jehanzeb and Micorek, Jakub and Possegger, Horst and Bischof, Horst},
    title     = {The Norm Must Go On: Dynamic Unsupervised Domain Adaptation by Normalization},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    year      = {2022}
}

Also read DISC, an extension of DUA - accepted at CVPR workshops.

@InProceedings{mirza2022disc,
    author    = {Mirza, M. Jehanzeb and Masana, Marc and Possegger, Horst and Bischof, Horst},
    title     = {An Efficient Domain-Incremental Learning Approach To Drive in All Weather Conditions},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    year      = {2022}
}

About

The Norm Must Go On: Dynamic Unsupervised Domain Adaptation by Normalization (CVPR 2022)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages