Skip to content

RefineNet:使用多路径精炼网络进行高分辨率语义分割(RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation)

Notifications You must be signed in to change notification settings

jiye-ML/Semantic_Segmentation_RefineNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RefineNet tensorflow 实现

  • 使用ResNet作为特征提取器
  • paper

文件部署

  • ResNetV1: 残差网络
  • RefineNet:
  • Augmentation: 数据增强
  • Data: 包含voc数据从图片转换为tfrecords形式的类和voc数据分装类
    • 注意先要对原始图片进行
  • Train: 训练
  • Test: 测试
  • Predict: 预测

prepare

  • download the pretrain model of resnet_v1_101.ckpt, you can download it from here
  • download the pascal voc dataset
  • some dependence like cv2, numpy and etc. recommend to install Anaconda

training

  • first, run convert_pascal_voc_to_tfrecords.py to convert training data into .tfrecords, Or you can use the tfrecord I converted In BaiduYun.Currently, I only use the pascal voc 2012 for training.
  • second, run python RefineNet/multi_gpu_train.py, also, you can change some hyper parameters in this file, like the batch size.

eval

  • if you have already got a model, or just download the model I trained on pascal voc.model.
  • put images in demo/ and run python RefineNet/demo.py

roadmap

  • python2/3 compatibility
  • Complete realization of refinenet model
  • test on pascal voc, give the IoU result
  • training on other datasets

About

RefineNet:使用多路径精炼网络进行高分辨率语义分割(RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages