forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* [WIP] Basic task extraction mechanism is implemented. * [WIP] For gradual integration with Relay pipeline, meta_schedule/integration.py is created for relax to avoid potential conflict. * support tir tuning and injection mode * Add target field for Relax Extracted Task * 1. Create relax namespace/tvm objects/... for metaschedule to preserve relay support. 2. Promote target field from Optional<Target> to Target * Support ApplyHistoryBest * Reflect feedback from Yuchen * minor improvement and fix linter issue * add ASF header * Reorganize file structure * fix lint errors * remove the import-outside-toplevel * Reflect comments * remove redundant comment * As per discussion w/ Yuchen, ApplyHistoryBest is introduced as a Relax transformation pass. * remove redundant print msg * fix lint * reflect comments
- Loading branch information
Showing
11 changed files
with
669 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,316 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
"""Meta schedule integration with high-level IR""" | ||
from typing import Dict, List, Optional, Union | ||
|
||
import numpy as np # type: ignore | ||
import tvm.runtime.ndarray as nd | ||
|
||
from tvm._ffi import register_object, get_global_func | ||
from tvm.ir import IRModule, transform | ||
from tvm.relay import Any | ||
from tvm.relay import Function as RelayFunc | ||
from tvm.runtime import NDArray, Object | ||
from tvm.target import Target | ||
from tvm.tir import PrimFunc | ||
from tvm.relax.expr import Function as RelaxFunc | ||
from tvm.relax.utils import tir_partitioner | ||
from tvm.relax.ty import DynTensorType | ||
|
||
from . import _ffi_api | ||
from .database import Database | ||
|
||
|
||
@register_object("meta_schedule.ExtractedTask") | ||
class ExtractedTask(Object): | ||
"""A tuning task extracted from the high-level IR | ||
Parameters | ||
---------- | ||
task_name : str | ||
The name of the task extracted | ||
mod : IRModule | ||
The high-level IR | ||
target: Target | ||
Target information | ||
dispatched : List[IRModule] | ||
A list of low-level IRs that the high-level IR could potentially dispatch to | ||
""" | ||
|
||
task_name: str | ||
mod: IRModule | ||
dispatched: List[IRModule] | ||
|
||
def __init__( | ||
self, | ||
task_name: str, | ||
mod: IRModule, | ||
target: Target, | ||
dispatched: List[IRModule], | ||
) -> None: | ||
self.__init_handle_by_constructor__( | ||
_ffi_api.ExtractedTask, # type: ignore # pylint: disable=no-member | ||
task_name, | ||
mod, | ||
target, | ||
dispatched, | ||
) | ||
|
||
|
||
@register_object("meta_schedule.MetaScheduleContext") | ||
class MetaScheduleContext(Object): | ||
"""A context manager interface for the integration""" | ||
|
||
def query( | ||
self, | ||
task_name: str, | ||
mod: IRModule, | ||
target: Target, | ||
dispatched: Optional[List[IRModule]], | ||
) -> Union[IRModule, None]: | ||
"""The entry point of the integration | ||
Parameters | ||
---------- | ||
task_name : str | ||
The name of the task extracted | ||
mod : IRModule | ||
The high-level IR | ||
target: Target | ||
Target Info | ||
dispatched : Optional[List[IRModule]] | ||
A list of low-level IRs that the high-level IR could potentially dispatch to | ||
Returns | ||
------- | ||
result : IRModule or None | ||
Currently we only have to return tir::PrimFunc, but we wrap it under IRModule for | ||
more general future use. None is returned if there is no feedback hint. | ||
""" | ||
return _ffi_api.MetaScheduleContextQuery( # type: ignore # pylint: disable=no-member | ||
self, | ||
task_name, | ||
mod, | ||
target, | ||
dispatched, | ||
) | ||
|
||
@staticmethod | ||
def current() -> Optional["MetaScheduleContext"]: | ||
"""The context manager in the current scope | ||
Returns | ||
------- | ||
ctx : Optional[MetaScheduleContext] | ||
The MetaScheduleContext in the current scope. | ||
NullOpt if it's currently not under any MetaScheduleContext. | ||
""" | ||
return _ffi_api.MetaScheduleContextCurrent() # type: ignore # pylint: disable=no-member | ||
|
||
@staticmethod | ||
def query_inside_with_scope( | ||
task_name: str, | ||
mod: IRModule, | ||
target: Target, | ||
dispatched: Optional[List[IRModule]], | ||
) -> Union[IRModule, None]: | ||
"""The entry point of the integration workflow. The compilation process of the high-level | ||
IR should call this method for task extraction and for feedback hints | ||
Basically, this method is equivalent to: | ||
.. code-block:: python | ||
def query_inside_with_scope(task_name, mod, dispatched): | ||
ctx = MetaScheduleContext.current() | ||
assert ctx is not None | ||
mod = ctx.query(task_name, mod, target, dispatched) | ||
Parameters | ||
---------- | ||
task_name : str | ||
The name of the task | ||
mod : IRModule | ||
The high-level IR | ||
target: Target | ||
Target | ||
dispatched : Optional[List[IRModule]] | ||
A list of low-level IRs that the high-level IR could potentially dispatch to | ||
Returns | ||
------- | ||
result : IRModule or None | ||
Currently we only have to return tir::PrimFunc, but we wrap it under IRModule for | ||
more general future use. None is returned if there is no feedback hint. | ||
""" | ||
return _ffi_api.MetaScheduleContextQueryInsideWithScope( # type: ignore # pylint: disable=no-member | ||
task_name, | ||
mod, | ||
target, | ||
dispatched, | ||
) | ||
|
||
def __enter__(self) -> "MetaScheduleContext": | ||
"""Entering the scope of the context manager""" | ||
_ffi_api.MetaScheduleContextEnterScope(self) # type: ignore # pylint: disable=no-member | ||
return self | ||
|
||
def __exit__(self, ptype, value, trace) -> None: | ||
"""Exiting the scope of the context manager""" | ||
_ffi_api.MetaScheduleContextExitScope(self) # type: ignore # pylint: disable=no-member | ||
|
||
|
||
@register_object("meta_schedule.ApplyHistoryBest") | ||
class ApplyHistoryBest(MetaScheduleContext): | ||
"""An integration context that allows application of historically best record from database""" | ||
|
||
database: Database | ||
""" The database to be queried from""" | ||
|
||
def __init__(self, database) -> None: | ||
self.__init_handle_by_constructor__(_ffi_api.ApplyHistoryBest, database) # type: ignore # pylint: disable=no-member | ||
|
||
|
||
def extract_task_from_relay( | ||
mod: Union[IRModule, RelayFunc], | ||
target: Target, | ||
params: Optional[Dict[str, NDArray]] = None, | ||
*, | ||
opt_level: int = 3, | ||
pass_config: Optional[Dict[str, Any]] = None, | ||
disabled_pass: Optional[List[str]] = None, | ||
) -> List[ExtractedTask]: | ||
"""Extract tuning tasks from a relay program. | ||
Parameters | ||
---------- | ||
mod : Union[tvm.IRModule, tvm.relay.Function] | ||
The module or function to tune | ||
target : tvm.target.Target | ||
The compilation target | ||
params : Optional[Dict[str, tvm.runtime.NDArray]] | ||
The associated parameters of the program | ||
opt_level : int | ||
The optimization level of the compiler | ||
pass_config : Optional[Dict[str, Any]] | ||
The pass config of the compiler | ||
disabled_pass : Optional[List[str]] | ||
The list of disabled passes of the compiler | ||
Returns | ||
------- | ||
tasks: List[ExtractedTask] | ||
The tasks extracted from this network | ||
""" | ||
|
||
extract_task_func = get_global_func("relay.backend.MetaScheduleExtractTask") | ||
assert extract_task_func | ||
|
||
target = Target(target) if isinstance(target, str) else target | ||
|
||
relay_params = {} | ||
for name, param in params.items(): | ||
if isinstance(param, np.ndarray): | ||
param = nd.array(param) | ||
relay_params[name] = param | ||
|
||
if disabled_pass is None: | ||
disabled_pass = [] | ||
if pass_config is None: | ||
pass_config = {"relay.backend.use_meta_schedule": True} | ||
|
||
if isinstance(mod, RelayFunc): | ||
mod = IRModule.from_expr(mod) | ||
if not isinstance(target, Target): | ||
target = Target(target) | ||
|
||
with target, transform.PassContext( | ||
opt_level=opt_level, | ||
config=pass_config, | ||
disabled_pass=disabled_pass, | ||
): | ||
tasks = extract_task_func(mod, target, relay_params) | ||
# Tasks are extracted via post order visit, return the reversed list. | ||
return list(reversed(tasks)) | ||
|
||
|
||
def extract_task_from_relax( | ||
mod: Union[IRModule, RelaxFunc], | ||
target: Target, | ||
*, | ||
opt_level: int = 3, | ||
pass_config: Dict[str, DynTensorType] = {}, | ||
disabled_pass: List[str] = [], | ||
) -> List[ExtractedTask]: | ||
"""Extract tuning tasks from a relax program. | ||
Parameters | ||
---------- | ||
mod : Union[tvm.IRModule, tvm.relax.Function] | ||
The module or function to tune | ||
target : tvm.target.Target | ||
The compilation target | ||
opt_level : int | ||
The optimization level of the compiler | ||
pass_config : Dict[str, DynTensorType] | ||
The pass config of the compiler | ||
disabled_pass : List[str] | ||
The list of disabled passes of the compiler | ||
Returns | ||
------- | ||
tasks: List[ExtractedTask] | ||
The tasks extracted from this network | ||
""" | ||
|
||
@contextmanager | ||
def _autotvm_silencer(): | ||
from tvm import autotvm # pylint: disable=import-outside-toplevel | ||
|
||
silent = autotvm.GLOBAL_SCOPE.silent | ||
autotvm.GLOBAL_SCOPE.silent = True | ||
try: | ||
yield | ||
finally: | ||
autotvm.GLOBAL_SCOPE.silent = silent | ||
|
||
def _thread_run(func: Callable[[], None]) -> None: | ||
import threading # pylint: disable=import-outside-toplevel | ||
|
||
thread = threading.Thread(target=func) | ||
thread.start() | ||
thread.join() | ||
|
||
env = TaskExtraction() | ||
if isinstance(mod, RelaxFunc): | ||
mod = IRModule.from_expr(mod) | ||
if not isinstance(target, Target): | ||
target = Target(target) | ||
|
||
def _func(): | ||
with env, _autotvm_silencer(), transform.PassContext( | ||
config=pass_config, | ||
disabled_pass=disabled_pass, | ||
opt_level=opt_level, | ||
): | ||
tir_partitions = tir_partitioner(mod) | ||
for tir_mod in tir_partitions: | ||
func_name = tir_mod.get_global_vars()[0].name_hint | ||
MetaScheduleContext.query_inside_with_scope(func_name, tir_mod, target, [tir_mod]) | ||
|
||
_thread_run(_func) | ||
return env.tasks |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -25,7 +25,6 @@ | |
from . import analysis | ||
from . import transform | ||
|
||
|
||
# Expr | ||
Expr = expr.Expr | ||
Span = expr.Span | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.