-
Notifications
You must be signed in to change notification settings - Fork 634
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit ea884bd
Showing
10 changed files
with
813 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,368 @@ | ||
# 机器学习资源 Machine learning | ||
|
||
|
||
# 本项目已更新,请移步到[这里](https://github.com/allmachinelearning/MachineLearning)参与我们最新的机器学习开源项目 | ||
|
||
关于机器学习和行为识别的资料,请见我的下面两个仓库: | ||
|
||
- [行为识别](https://github.com/jindongwang/activityrecognition) | ||
- [迁移学习](https://github.com/jindongwang/transferlearning) | ||
|
||
**致力于分享最新最全面的机器学习资料,欢迎你成为贡献者!** | ||
|
||
|
||
|
||
**[Machine learning surveys](https://github.com/metrofun/machine-learning-surveys/)** | ||
|
||
|
||
|
||
**[快速入门TensorFlow](https://github.com/aymericdamien/TensorFlow-Examples)** | ||
|
||
|
||
|
||
- - - | ||
|
||
|
||
|
||
## 预备知识 Prerequisite | ||
|
||
|
||
|
||
- Python | ||
|
||
- [Learn X in Y minutes](https://learnxinyminutes.com/docs/python/) | ||
|
||
- [Python机器学习互动教程](https://www.springboard.com/learning-paths/machine-learning-python/) | ||
|
||
|
||
|
||
- Markdown | ||
|
||
- [Mastering Markdown](https://guides.github.com/features/mastering-markdown/) - Markdown is a easy-to-use writing tool on the GitHu. | ||
|
||
|
||
|
||
- R | ||
|
||
- [R Tutorial](http://www.cyclismo.org/tutorial/R/) | ||
|
||
|
||
|
||
- Python和Matlab的一些cheat sheet:http://ddl.escience.cn/f/IDkq 包含: | ||
|
||
- Numpy、Scipy、Pandas科学计算库 | ||
|
||
- Scikit-learn机器学习库、Keras深度学习库 | ||
|
||
- Matlab科学计算 | ||
|
||
- Matplotlib画图 | ||
|
||
|
||
|
||
- - - | ||
|
||
|
||
|
||
|
||
|
||
## 理论 Theory | ||
|
||
|
||
|
||
- ### 深度学习 Deep learning | ||
|
||
|
||
|
||
- ### [强化学习 Reinforcement learning](https://github.com/allmachinelearning/ReinforcementLearning) | ||
|
||
|
||
|
||
- ### [迁移学习 Transfer learning](https://jindongwang.github.io/transferlearning/) | ||
|
||
|
||
|
||
- ### [分布式学习系统 Distributed learning system](https://github.com/allmachinelearning/Deep-Learning-System-Design) | ||
|
||
|
||
|
||
|
||
|
||
- - - | ||
|
||
|
||
|
||
|
||
|
||
## 应用 Applications | ||
|
||
|
||
|
||
- ### 计算机视觉/机器视觉 Computer vision / machine vision | ||
|
||
|
||
|
||
- ### [自然语言处理 Natural language procesing](https://github.com/Nativeatom/NaturalLanguageProcessing) | ||
|
||
|
||
|
||
- ### 语音识别 Speech recognition | ||
|
||
|
||
|
||
- ### 生物信息学 Bioinfomatics | ||
|
||
|
||
|
||
- ### 医疗 Medical | ||
|
||
|
||
|
||
- ### [行为识别 Activity recognition](https://github.com/jindongwang/activityrecognition) | ||
|
||
|
||
|
||
- ### [人工智能(多智能体) Artificial Intelligence(Multi-Agent)](http://ddl.escience.cn/f/ILKI) | ||
|
||
|
||
|
||
|
||
|
||
- - - | ||
|
||
|
||
|
||
## 文档 notes | ||
|
||
|
||
|
||
- [综述文章汇总](https://github.com/jindongwang/MachineLearning/blob/master/notes/survey_readme.md) | ||
|
||
|
||
|
||
- [近200篇机器学习资料汇总!](https://zhuanlan.zhihu.com/p/26136757) | ||
|
||
|
||
|
||
- [机器学习入门资料](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/MLMaterials.md) | ||
|
||
|
||
|
||
- [MIT.Introduction to Machine Learning](http://ddl.escience.cn/f/Iwtu) | ||
|
||
|
||
|
||
- [东京大学同学做的人机交互报告](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/FieldResearchinChina927-104.pdf) | ||
|
||
|
||
|
||
- [人机交互简介](https://github.com/jindongwang/HCI) | ||
|
||
|
||
|
||
- [人机交互与创业论坛](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/%E4%BA%BA%E6%9C%BA%E4%BA%A4%E4%BA%92%E4%B8%8E%E5%88%9B%E4%B8%9A%E8%AE%BA%E5%9D%9B.md) | ||
|
||
|
||
|
||
- [职场机器学习入门](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/%E8%81%8C%E5%9C%BA-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%85%A5%E9%97%A8.md) | ||
|
||
|
||
|
||
- [机器学习的发展历程及启示](http://mt.sohu.com/20170326/n484898474.shtml), (@Prof. Zhihua Zhang/@张志华教授) | ||
|
||
|
||
|
||
- [常用的距离和相似度度量](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/distance%20and%20similarity.md) | ||
|
||
|
||
|
||
- - - | ||
|
||
|
||
|
||
## 课程与讲座 Course and talk | ||
|
||
|
||
|
||
- [斯坦福机器学习入门课程](https://www.coursera.org/learn/machine-learning),讲师为Andrew Ng,适合数学基础一般的人,适合入门,但是学完会发现只是懂个大概,也就相当于什么都不懂。省略了很多机器学习的细节 | ||
|
||
- [Stanford CS 229](http://cs229.stanford.edu/materials.html), Andrew Ng机器学习课无阉割版,Notes比较详细 | ||
|
||
- [CMU 10-702 Statistical Machine Learning](http://www.stat.cmu.edu/~larry/=sml/), 讲师是Larry Wasserman,应该是统计系开的机器学习,非常数学化,第一节课就提到了RKHS(Reproducing Kernel Hilbert Space),建议数学出身的同学看或者是学过实变函数泛函分析的人看一看 | ||
|
||
- [CMU 10-715 Advanced Introduction to Machine Learning](https://www.cs.cmu.edu/~epxing/Class/10715/),同样是CMU phd级别的课,节奏快难度高 | ||
|
||
- Coursera上国立台湾大学[林轩田](https://www.coursera.org/instructor/htlin)开的两门课:[机器学习基石](https://www.coursera.org/course/ntumlone)(适合入门),[机器学习技法](https://www.coursera.org/course/ntumltwo)(适合提高)。 | ||
|
||
- [Machine Learning for Data Analysis](https://www.coursera.org/learn/machine-learning-data-analysis), Coursera上Wesleyan大学的Data Analysis and Interpretation专项课程第四课。 | ||
|
||
- [Neural Networks for Machine Learning](https://www.coursera.org/learn/neural-networks), Coursera上的著名课程,由Geoffrey Hinton教授主讲。 | ||
|
||
- 斯坦福大学Feifei Li教授的[CS231n系列深度学习课程](http://cs231n.stanford.edu/)。Feifei Li目前是Google的科学家,深度学习与图像识别方面的大牛。这门课的笔记可以看[这里](https://zhuanlan.zhihu.com/p/21930884)。 | ||
|
||
- Max Planck Institute for Intelligent Systems Tübingen[德国马普所智能系统研究所2013的机器学习暑期学校视频](https://www.youtube.com/playlist?list=PLqJm7Rc5-EXFv6RXaPZzzlzo93Hl0v91E),仔细翻这个频道还可以找到2015的暑期学校视频 | ||
|
||
- 知乎Live:[我们一起开始机器学习吧](https://www.zhihu.com/lives/792423196996546560),[机器学习入门之特征工程](https://www.zhihu.com/lives/819543866939174912) | ||
|
||
|
||
|
||
- - - | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
## 相关书籍 reference book | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
- 入门读物 [The Elements of Statistical Learning(英文第二版),The Elements of Statistical Learning.pdf](http://ddl.escience.cn/ff/emZH) | ||
|
||
|
||
|
||
- [机器学习](https://book.douban.com/subject/26708119/), (@Prof. Zhihua Zhou/周志华教授) | ||
|
||
|
||
|
||
- [统计学习方法](https://book.douban.com/subject/10590856/), (@Dr. Hang Li/李航博士) | ||
|
||
|
||
|
||
- [一些Kindle读物](http://ddl.escience.cn/f/IwWE): | ||
|
||
|
||
|
||
- 利用Python进行数据分析.azw3 | ||
|
||
- 跟老齐学Python:从入门到精通.azw3 | ||
|
||
- Python与数据挖掘 (大数据技术丛书) - 张良均.azw3 | ||
|
||
- Python学习手册.azw3 | ||
|
||
- Python性能分析与优化.mobi | ||
|
||
- Python数据挖掘入门与实践_7242.azw3 | ||
|
||
- Python数据分析与挖掘实战(大数据技术丛书) - 张良均.azw3 | ||
|
||
- Python科学计算(第2版).azw3 | ||
|
||
- Python计算机视觉编程 [美] Jan Erik Solem.azw3 | ||
|
||
- python核心编程(第三版).azw3 | ||
|
||
- Python核心编程(第二版).azw3 | ||
|
||
- Python高手之路 - [法] 朱利安·丹乔(Julien Danjou).azw3 | ||
|
||
- Python编程快速上手 让繁琐工作自动化.azw3 | ||
|
||
- Python编程:从入门到实践.azw3 | ||
|
||
- Python3 CookBook中文版.mobi | ||
|
||
- 终极算法机器学习和人工智能如何重塑世界 - [美 ]佩德罗·多明戈斯.azw3.azw3 | ||
|
||
- 机器学习系统设计 (图灵程序设计丛书) - [美]Willi Richert & Luis Pedro Coelho.azw3.azw3 | ||
|
||
- 机器学习实践指南:案例应用解析(第2版) (大数据技术丛书) - 麦好.azw3 | ||
|
||
- 机器学习实践 测试驱动的开发方法 (图灵程序设计丛书) - [美] 柯克(Matthew Kirk).a.azw3 | ||
|
||
- 机器学习:实用案例解析 (O'Reilly精品图书系 | ||
|
||
|
||
|
||
- [Packt每日限免电子书精选](http://ddl.escience.cn/f/IS4a): | ||
|
||
|
||
|
||
- Learning Data Mining with Python | ||
|
||
- Matplotlib for python developers | ||
|
||
- Machine Learing with Spark | ||
|
||
- Mastering R for Quantitative Finance | ||
|
||
- Mastering matplotlib | ||
|
||
- Neural Network Programming with Java | ||
|
||
- Python Machine Learning | ||
|
||
- R Data Visualization Cookbook | ||
|
||
- R Deep Learning Essentials | ||
|
||
- R Graphs Cookbook second edition | ||
|
||
- D3.js By Example | ||
|
||
- Data Analysis With R | ||
|
||
- Java Deep Learning Essentials | ||
|
||
- Learning Bayesian Models with R | ||
|
||
- Learning Pandas | ||
|
||
- Python Parallel Programming Cookbook | ||
|
||
- Machine Learning with R | ||
|
||
--- | ||
|
||
|
||
|
||
## 其他 Miscellaneous | ||
|
||
|
||
|
||
- [机器学习日报](http://forum.ai100.com.cn/):每天更新学术和工业界最新的研究成果 | ||
|
||
|
||
|
||
- - - | ||
|
||
|
||
|
||
## 如何加入 How to contribute | ||
|
||
|
||
|
||
- 直接pull requests | ||
|
||
- 或者到[这里](https://github.com/allmachinelearning/MachineLearning/issues/1)留下你的Github账号我们把你加入贡献者列表 | ||
|
||
- PDF等大文件上传方法:登录 http://ddl.escience.cn 用户名:allmachinelearning@163.com,密码:machine123。登录后,在‘个人空间’中上传,然后将文件(夹)链接共享。 | ||
|
||
- 之后请在贡献者页面加入自己的信息 | ||
|
||
|
||
|
||
## 如何开始项目协同合作 | ||
|
||
[快速了解github协同工作](http://hucaihua.cn/2016/12/02/github_cooperation/) | ||
|
||
|
||
|
||
[及时更新fork项目](https://jinlong.github.io/2015/10/12/syncing-a-fork/) | ||
|
||
|
||
|
||
#### [贡献者 Contributors](https://github.com/allmachinelearning/MachineLearning/blob/master/contributors.md) | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
theme: jekyll-theme-slate |
Oops, something went wrong.