Skip to content

jimmycv07/DiffIR2VR-Zero

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DiffIR2VR-Zero: Zero-Shot Video Restoration with Diffusion-based Image Restoration Models

_ _ Hugging Face Spaces visitors

DiffIR2VR-Zero is a zero-shot video restoration method that uses pretrained image diffusion models to handle video restoration tasks such as denoising and up to 8x super-resolution.


Overview

Installation

# clone this repo
git clone https://github.com/jimmycv07/DiffIR2VR-Zero.git
cd DiffIR2VR-Zero

# create environment
conda create -n diffir2vr python=3.10
conda activate diffir2vr
pip install -r requirements.txt

Pretrained Weights

Please place the pretrained weights like the following folder structure. You will need to download the GMFlow weights manually; the rest will be downloaded automatically during inference.

weights
└─── gmflow_sintel-0c07dcb3.pth
└─── v2.pth
└─── v2-1_512-ema-pruned.ckpt

Inference

We provide some examples of inference commands; for additional arguments, please refer to inference.py.

Blind Video Denoising

python -u inference.py \
--version v2 \
--task dn \
--upscale 1 \
--cfg_scale 4.0 \
--batch_size 10 \
--input inputs/noise_50/flamingo \
--output results/Denoise/flamingo  \
--config configs/inference/my_cldm.yaml \
--final_size "(480, 854)" \
--merge_ratio "(0.6, 0)" \
--better_start 

Blind Video Super-Resolution

python -u inference.py \
--version v2 \
--task sr \
--upscale 4 \
--cfg_scale 4.0 \
--batch_size 10 \
--input inputs/BDx4/rhino \
--output results/SR/rhino  \
--config configs/inference/my_cldm.yaml \
--final_size "(480, 854)" \
--merge_ratio "(0.6, 0)" 

Citation

Please cite us if our work is useful for your research.

@article{yeh2024diffir2vr,
    title={DiffIR2VR-Zero: Zero-Shot Video Restoration with Diffusion-based Image Restoration Models},
    author={Chang-Han Yeh and Chin-Yang Lin and Zhixiang Wang and Chi-Wei Hsiao and Ting-Hsuan Chen and Yu-Lun Liu},
    journal={arXiv},
    year={2024}
}

Acknowledgement

This project is based on DiffBIR and VidToMe. Thanks for their awesome work.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages