Skip to content

In distribution results #18

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 7 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 13 additions & 3 deletions fine-tuning/clarify_aware_fine_tuning_v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -299,7 +299,7 @@ def tokenize_v4(samples):
per_device_train_batch_size=per_device_train_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=100,
max_steps=2000,
max_steps=500,
learning_rate=1e-5,#5e-4,
fp16=True,
logging_steps=10,
Expand Down Expand Up @@ -348,10 +348,20 @@ def tokenize_v4(samples):
model.save_pretrained(args.finetuned_model_path + '-bin', safe_serialization=False)

# Inference
# TODO: update eval
batch = tokenizer("Two things are infinite: ", return_tensors='pt').to('cuda')

with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch, max_new_tokens=50)

print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True))
# Output the results of the trained model for val_dataset in a new file
output_file = os.path.join(args.output_dir, "validation_results.txt")
with open(output_file, "w") as f:
for i, sample in enumerate(val_dataset):
inputs = tokenizer(sample["problem"], return_tensors='pt').to('cuda')
with torch.cuda.amp.autocast():
output_tokens = model.generate(**inputs, max_new_tokens=50)
output_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
f.write(f"Sample {i}:\n")
f.write(f"Problem: {sample['problem']}\n")
f.write(f"Generated Answer: {output_text}\n")
f.write(f"Actual Answer: {sample['answer']}\n\n")
183 changes: 183 additions & 0 deletions fine-tuning/in_dist_eval.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
import argparse
import os
import re
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
import google.generativeai as genai
from openai import OpenAI
import openai
from peft import PeftModel

gemini_api_key = os.getenv("GEMINI_API_KEY", 'default_gemini_api_key')
genai.configure(api_key=gemini_api_key)
model = genai.GenerativeModel("gemini-pro")
openai.api_key = os.getenv('OPENAI_API_KEY', 'default_openai_api_key')
client = OpenAI()

def call_gemini(response):
prompt = f"Is the following response a code or a question? Respond with 0 for code and 1 for question.\n\nResponse:\n{response}"
response = model.generate_content(prompt)
return int(response.text.strip())

def call_chatgpt(response):
prompt = f"Is the following response a code or a question? Respond with 0 for code and 1 for question.\n\nResponse:\n{response}"
completion = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": prompt
}
]
)
return int(completion.choices[0].message.content.strip())

def get_ask_question_rate(response):
if len(response_2_code(response)) == 0:
return 1
else:
return 0

def response_2_code(response):
code_template = re.compile('```.*\n([\s\S]+?)\n```', re.M)
code = code_template.findall(response)
if len(code) > 0:
return code[0] # code[-1] is the last triple code snippet
else:
return ''

def compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted')
acc = accuracy_score(labels, preds)
comm_rate = get_ask_question_rate(pred.predictions)
comm_rate_gpt = call_chatgpt(pred.predictions)
comm_rate_gemini = call_gemini(pred.predictions)
return {
'accuracy': acc,
'f1': f1,
'precision': precision,
'recall': recall,
'comm_rate': comm_rate,
'comm_rate_gpt': comm_rate_gpt,
}

# python in_dist_eval.py --model_name_or_path /project/def-fard/jie/deepseek-ai/deepseek-coder-6.7b-instruct --finetuned_model /project/def-fard/jie/finetuned_models/deepseek-coder-6.7b-instruct-finetuned-02212025 --dataset_path /project/def-fard/jie/finetuning_data/FINAL_finetuning_data_ques_only.json --tokenize_version 4
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', type=str, required=True, help='Path to the original model')
parser.add_argument('--finetuned_model_path', type=str, required=True, help='Path to the finetuned model')
parser.add_argument('--dataset_path', type=str, required=True, help='Path to the dataset')
parser.add_argument('--tokenize_version', type=int, choices=[1, 2, 3, 4], required=True, help='Select which tokenize function to use: 1, 2, 3, or 4')
parser.add_argument('--output_dir', type=str, default='output-dir', help='Directory to save the output results')
args = parser.parse_args()

# Load the model and tokenizer
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path)
model = PeftModel.from_pretrained(model, args.finetuned_model_path)

tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)

# Define the tokenize function based on the version
def tokenize_v1(samples):
concatenated_text = samples['problem'] + samples['answer']
result = tokenizer(
concatenated_text,
truncation=True,
max_length=512,
padding=False,
return_tensors=None,
)
result["labels"] = result["input_ids"].copy()
return result

def tokenize_v2(samples):
concatenated_text = samples['problem'] + samples['answer']
result = tokenizer(
concatenated_text,
truncation=True,
max_length=512,
padding=False,
return_tensors=None,
)
problem_tokens = tokenizer(samples['problem'], truncation=True, max_length=512, padding=False, return_tensors=None)["input_ids"]
answer_tokens = tokenizer(samples['answer'], truncation=True, max_length=512, padding=False, return_tensors=None)["input_ids"]
answer_start_idx = len(problem_tokens)
labels = [-100] * len(result["input_ids"])
labels[answer_start_idx:answer_start_idx + len(answer_tokens)] = result["input_ids"][answer_start_idx:answer_start_idx + len(answer_tokens)]
result["labels"] = labels
return result

def tokenize_v3(samples):
concatenated_text = samples['problem'] + samples['answer'] + samples['type']
result = tokenizer(
concatenated_text,
truncation=True,
max_length=512,
padding=False,
return_tensors=None,
)
result["labels"] = result["input_ids"].copy()
return result

def tokenize_v4(samples):
QPROMPT = "You are an expert software developer who writes high quality code. With below information, please either generate Python3 code (Respond directly with code only with markdown), or ask clarifying questions:\n"
if samples['type'] == "Original":
APROMPT = "This is a clear problem requiring no clarifications. Let's generate the required Python3 code directly in markdown."
else:
APROMPT = "I have a few clarifying questions. Please respond with the necessary details so I can assist further."
concatenated_text = f"{QPROMPT} {samples['problem']}" + f"{APROMPT} {samples['answer']}"
result = tokenizer(
concatenated_text,
truncation=True,
max_length=2048,
padding=False,
return_tensors=None,
)
result["labels"] = result["input_ids"].copy()
return result

if args.tokenize_version == 1:
tokenize_fn = tokenize_v1
elif args.tokenize_version == 2:
tokenize_fn = tokenize_v2
elif args.tokenize_version == 3:
tokenize_fn = tokenize_v3
elif args.tokenize_version == 4:
tokenize_fn = tokenize_v4

# Load the dataset
data = load_dataset('json', data_files=args.dataset_path)
tokenized_data = data.map(tokenize_fn)
val_dataset = tokenized_data['train'].train_test_split(test_size=0.2, seed=42)['test']


# Output the results of the trained model for val_dataset in a new file
output_file = os.path.join(args.output_dir, "validation_results.txt")
with open(output_file, "w") as f:
for i, sample in enumerate(val_dataset):
inputs = tokenizer(sample["problem"], return_tensors='pt').to('cuda')
with torch.cuda.amp.autocast():
output_tokens = model.generate(**inputs, max_new_tokens=2000)
output_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
f.write(f"Sample {i}:\n")
f.write(f"Problem: {sample['problem']}\n")
f.write(f"Generated Answer: {output_text}\n")
f.write(f"Actual Answer: {sample['answer']}\n\n")


# Define the Trainer
#training_args = TrainingArguments(per_device_eval_batch_size=16,output_dir='./results',logging_dir='./logs')

#trainer = Trainer(model=model,args=training_args,eval_dataset=val_dataset,compute_metrics=compute_metrics)

# Evaluate the model
#results = trainer.evaluate()
#print(results)

if __name__ == "__main__":
main()
153 changes: 153 additions & 0 deletions fine-tuning/in_dist_eval2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
import argparse
import os
import re
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
from peft import PeftModel


def get_ask_question_rate(response):
if len(response_2_code(response)) == 0:
return 1
else:
return 0

def response_2_code(response):
code_template = re.compile('```.*\n([\s\S]+?)\n```', re.M)
code = code_template.findall(response)
if len(code) > 0:
return code[0] # code[-1] is the last triple code snippet
else:
return ''

def compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted')
acc = accuracy_score(labels, preds)
comm_rate = get_ask_question_rate(pred.predictions)
return {
'accuracy': acc,
'f1': f1,
'precision': precision,
'recall': recall,
'comm_rate': comm_rate,
}

# python in_dist_eval.py --model_name_or_path /project/def-fard/jie/deepseek-ai/deepseek-coder-6.7b-instruct --finetuned_model /project/def-fard/jie/finetuned_models/deepseek-coder-6.7b-instruct-finetuned-02212025 --dataset_path /project/def-fard/jie/finetuning_data/FINAL_finetuning_data_ques_only.json --tokenize_version 4
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', type=str, required=True, help='Path to the original model')
parser.add_argument('--finetuned_model_path', type=str, required=True, help='Path to the finetuned model')
parser.add_argument('--dataset_path', type=str, required=True, help='Path to the dataset')
parser.add_argument('--tokenize_version', type=int, choices=[1, 2, 3, 4], required=True, help='Select which tokenize function to use: 1, 2, 3, or 4')
parser.add_argument('--output_dir', type=str, default='output-dir', help='Directory to save the output results')
args = parser.parse_args()

# Load the model and tokenizer
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path)
model = PeftModel.from_pretrained(model, args.finetuned_model_path)

tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)

# Define the tokenize function based on the version
def tokenize_v1(samples):
concatenated_text = samples['problem'] + samples['answer']
result = tokenizer(
concatenated_text,
truncation=True,
max_length=512,
padding=False,
return_tensors=None,
)
result["labels"] = result["input_ids"].copy()
return result

def tokenize_v2(samples):
concatenated_text = samples['problem'] + samples['answer']
result = tokenizer(
concatenated_text,
truncation=True,
max_length=512,
padding=False,
return_tensors=None,
)
problem_tokens = tokenizer(samples['problem'], truncation=True, max_length=512, padding=False, return_tensors=None)["input_ids"]
answer_tokens = tokenizer(samples['answer'], truncation=True, max_length=512, padding=False, return_tensors=None)["input_ids"]
answer_start_idx = len(problem_tokens)
labels = [-100] * len(result["input_ids"])
labels[answer_start_idx:answer_start_idx + len(answer_tokens)] = result["input_ids"][answer_start_idx:answer_start_idx + len(answer_tokens)]
result["labels"] = labels
return result

def tokenize_v3(samples):
concatenated_text = samples['problem'] + samples['answer'] + samples['type']
result = tokenizer(
concatenated_text,
truncation=True,
max_length=512,
padding=False,
return_tensors=None,
)
result["labels"] = result["input_ids"].copy()
return result

def tokenize_v4(samples):
QPROMPT = "You are an expert software developer who writes high quality code. With below information, please either generate Python3 code (Respond directly with code only with markdown), or ask clarifying questions:\n"
if samples['type'] == "Original":
APROMPT = "This is a clear problem requiring no clarifications. Let's generate the required Python3 code directly in markdown."
else:
APROMPT = "I have a few clarifying questions. Please respond with the necessary details so I can assist further."
concatenated_text = f"{QPROMPT} {samples['problem']}" + f"{APROMPT} {samples['answer']}"
result = tokenizer(
concatenated_text,
truncation=True,
max_length=2048,
padding=False,
return_tensors=None,
)
result["labels"] = result["input_ids"].copy()
return result

if args.tokenize_version == 1:
tokenize_fn = tokenize_v1
elif args.tokenize_version == 2:
tokenize_fn = tokenize_v2
elif args.tokenize_version == 3:
tokenize_fn = tokenize_v3
elif args.tokenize_version == 4:
tokenize_fn = tokenize_v4

# Load the dataset
data = load_dataset('json', data_files=args.dataset_path)
tokenized_data = data.map(tokenize_fn)
val_dataset = tokenized_data['train'].train_test_split(test_size=0.2, seed=42)['test']


# Output the results of the trained model for val_dataset in a new file
output_file = os.path.join(args.output_dir, "validation_results.txt")
with open(output_file, "w") as f:
for i, sample in enumerate(val_dataset):
inputs = tokenizer(sample["problem"], return_tensors='pt').to('cuda')
with torch.cuda.amp.autocast():
output_tokens = model.generate(**inputs, max_new_tokens=2000)
output_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
f.write(f"Sample {i}:\n")
f.write(f"Problem: {sample['problem']}\n")
f.write(f"Generated Answer: {output_text}\n")
f.write(f"Actual Answer: {sample['answer']}\n\n")


# Define the Trainer
#training_args = TrainingArguments(per_device_eval_batch_size=16,output_dir='./results',logging_dir='./logs')

#trainer = Trainer(model=model,args=training_args,eval_dataset=val_dataset,compute_metrics=compute_metrics)

# Evaluate the model
#results = trainer.evaluate()
#print(results)

if __name__ == "__main__":
main()
Loading