forked from hanna-xu/MEF-GAN
-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
8 changed files
with
1,066 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
import tensorflow as tf | ||
import numpy as npimport | ||
|
||
import tensorflow as tf | ||
|
||
from tensorflow.python import pywrap_tensorflow | ||
import numpy as np | ||
|
||
import tensorflow as tf | ||
from tensorflow.python import pywrap_tensorflow | ||
import numpy as np | ||
|
||
WEIGHT_INIT_STDDEV = 0.1 | ||
|
||
device = "/gpu:1" | ||
|
||
class Discriminator(object): | ||
def __init__(self, scope_name): | ||
self.weight_vars = [] | ||
self.scope = scope_name | ||
with tf.variable_scope(scope_name): | ||
self.weight_vars.append(self._create_variables(3, 64, 3, scope = 'conv1')) | ||
self.weight_vars.append(self._create_variables(64, 64, 3, scope = 'conv2')) | ||
self.weight_vars.append(self._create_variables(64, 96, 3, scope = 'conv3')) | ||
self.weight_vars.append(self._create_variables(96, 128, 3, scope = 'conv4')) | ||
self.weight_vars.append(self._create_variables(128, 256, 3, scope = 'conv5')) | ||
self.weight_vars.append(self._create_variables(256, 512, 3, scope = 'conv6')) | ||
# self.weight_vars.append(self._create_variables(128, 256, 3, scope = 'conv5')) | ||
# self.weight_vars.append(self._create_variables(256, 512, 3, scope = 'conv6')) | ||
# self.weight_vars.append(self._create_variables(512, 512, 3, scope = 'conv7')) | ||
|
||
# self.weight_vars.append(self._create_variables(12, 1, 3, scope = 'conv6')) | ||
|
||
def _create_variables(self, input_filters, output_filters, kernel_size, scope): | ||
shape = [kernel_size, kernel_size, input_filters, output_filters] | ||
with tf.device("/cpu:0"): | ||
with tf.variable_scope(scope): | ||
kernel = tf.Variable(tf.truncated_normal(shape, stddev = WEIGHT_INIT_STDDEV), name = 'kernel') | ||
bias = tf.Variable(tf.zeros([output_filters]), name = 'bias') | ||
return (kernel, bias) | ||
|
||
def discrim(self, img, reuse): | ||
with tf.device(device): | ||
conv_num = len(self.weight_vars) | ||
if len(img.shape) != 4: | ||
img = tf.expand_dims(img, -1) | ||
out = img | ||
for i in range(conv_num): | ||
kernel, bias = self.weight_vars[i] | ||
if i == 0: | ||
out = conv2d(out, kernel, bias, [1, 2, 2, 1], use_relu = True, use_BN = False, sn=True, | ||
Scope = self.scope + '/b' + str(i), Reuse = reuse) | ||
# elif i == conv_num - 1: | ||
# out = tf.nn.conv2d(out, kernel, [1, 1, 1, 1], padding = 'VALID') | ||
# out = tf.nn.bias_add(out, bias) | ||
# out = tf.nn.tanh(out) | ||
# out = out / 2 + 0.5 | ||
elif i == conv_num - 1: | ||
out = conv2d(out, kernel, bias, [1, 1, 1, 1], use_relu = True, use_BN = False, sn= False, | ||
Scope = self.scope + '/b' + str(i), Reuse = reuse) | ||
else: | ||
out = conv2d(out, kernel, bias, [1, 2, 2, 1], use_relu = True, use_BN = False, sn = True, | ||
Scope = self.scope + '/b' + str(i), Reuse = reuse) | ||
|
||
# out = self_attention(out, channel_factor = 8, scope_name=self.scope, name = 'self_attention4', reuse= reuse) | ||
out = tf.reshape(out, [-1, int(out.shape[1]) * int(out.shape[2]) * int(out.shape[3])]) | ||
|
||
with tf.variable_scope(self.scope): | ||
with tf.variable_scope('flatten1'): | ||
# out = tf.layers.dense(out, 512, activation = tf.nn.relu, use_bias = True, trainable = True, | ||
# # reuse = reuse) | ||
# out = tf.layers.batch_normalization(out, training = True, reuse = reuse) | ||
# # with tf.variable_scope('flatten2'): | ||
out = tf.layers.dense(out, 1, activation = tf.nn.tanh, use_bias = True, trainable = True, | ||
reuse = reuse) | ||
out = out / 2 + 0.5 | ||
return out | ||
|
||
|
||
def conv2d(x, kernel, bias, strides, use_relu = True, use_BN = True, Scope = None, sn=True, Reuse = None): | ||
with tf.device(device): | ||
# padding image with reflection mode | ||
x_padded = tf.pad(x, [[0, 0], [1, 1], [1, 1], [0, 0]], mode = 'REFLECT') | ||
# conv and add bias | ||
if sn: | ||
out = tf.nn.conv2d(input=x_padded, filter = spectral_norm(kernel, scope_name = Scope, reuse=Reuse), strides=strides, padding = 'VALID') | ||
else: | ||
out = tf.nn.conv2d(input = x_padded, filter = kernel, strides = strides, padding = 'VALID') | ||
out = tf.nn.bias_add(out, bias) | ||
if use_BN: | ||
with tf.variable_scope(Scope): | ||
out = tf.layers.batch_normalization(out, training = True, reuse = Reuse) | ||
if use_relu: | ||
# out = tf.nn.relu(out) | ||
out = tf.maximum(out, 0.2 * out) | ||
return out | ||
|
||
|
||
|
||
def self_attention(inputs, channel_factor = 8, scope_name = None, name = 'self_attention', reuse=False): | ||
num_filters = inputs.shape[-1].value // channel_factor | ||
with tf.variable_scope(scope_name): | ||
with tf.variable_scope(name, reuse= reuse): | ||
flat_inputs = tf.reshape(inputs, shape = [int(inputs.shape[0]), int(inputs.shape[1])*int(inputs.shape[2]), int(inputs.shape[-1])]) | ||
print('flat_inputs shape:', flat_inputs.shape) | ||
f = tf.layers.conv1d(flat_inputs, kernel_size = 1, filters = num_filters) | ||
g = tf.layers.conv1d(flat_inputs, kernel_size = 1, filters = num_filters) | ||
h = tf.layers.conv1d(flat_inputs, kernel_size = 1, filters = inputs.shape[-1]) | ||
beta = tf.nn.softmax(tf.matmul(f, g, transpose_b = True)) | ||
o = tf.matmul(beta, h) | ||
gamma = tf.get_variable('gamma', [], initializer = tf.zeros_initializer) | ||
y = gamma * o + flat_inputs | ||
y = tf.reshape(y, inputs.shape) | ||
print('attention output shape:', y.shape) | ||
return inputs | ||
|
||
|
||
def spectral_norm(w, iteration = 1, scope_name = None, reuse=False): | ||
w_shape = w.shape.as_list() | ||
w = tf.reshape(w, [-1, w_shape[-1]]) | ||
|
||
with tf.variable_scope(scope_name, reuse=reuse): | ||
u = tf.get_variable("u", [1, w_shape[-1]], initializer = tf.truncated_normal_initializer(), trainable = False) | ||
|
||
u_hat = u | ||
v_hat = None | ||
for i in range(1): | ||
""" | ||
power iteration | ||
Usually iteration = 1 will be enough | ||
""" | ||
v_ = tf.matmul(u_hat, tf.transpose(w)) | ||
v_hat = l2_norm(v_) | ||
|
||
u_ = tf.matmul(v_hat, w) | ||
u_hat = l2_norm(u_) | ||
|
||
sigma = tf.matmul(tf.matmul(v_hat, w), tf.transpose(u_hat)) | ||
w_norm = w / sigma | ||
|
||
with tf.control_dependencies([u.assign(u_hat)]): | ||
w_norm = tf.reshape(w_norm, w_shape) | ||
|
||
return w_norm | ||
|
||
|
||
def l2_norm(v, eps=1e-12): | ||
return v / (tf.reduce_sum(v ** 2) ** 0.5 + eps) | ||
|
Oops, something went wrong.