-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit aafd1a5
Showing
82 changed files
with
9,170 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
import torch | ||
import torch.nn as nn | ||
from torch.nn import functional as F | ||
|
||
|
||
class DSN(nn.Module): | ||
"""Deep Summarization Network""" | ||
def __init__(self, in_dim=1024, hid_dim=256, num_layers=1, cell='lstm'): | ||
super(DSN, self).__init__() | ||
assert cell in ['lstm', 'gru'], "cell must be either 'lstm' or 'gru'" | ||
if cell == 'lstm': | ||
self.rnn = nn.LSTM(in_dim, hid_dim, num_layers=num_layers, bidirectional=True, batch_first=True) | ||
else: | ||
self.rnn = nn.GRU(in_dim, hid_dim, num_layers=num_layers, bidirectional=True, batch_first=True) | ||
self.fc = nn.Linear(hid_dim*2, 1) | ||
|
||
def forward(self, x): | ||
h, _ = self.rnn(x) | ||
p = F.sigmoid(self.fc(h)) | ||
return p |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
from .vgg import * | ||
from .dpn import * | ||
from .lenet import * | ||
from .senet import * | ||
from .pnasnet import * | ||
from .densenet import * | ||
from .googlenet import * | ||
from .shufflenet import * | ||
from .shufflenetv2 import * | ||
from .resnet import * | ||
from .resnext import * | ||
from .preact_resnet import * | ||
from .mobilenet import * | ||
from .mobilenetv2 import * | ||
from .efficientnet import * | ||
from .regnet import * | ||
from .wide_resnet import * |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
'''DenseNet in PyTorch.''' | ||
import math | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
|
||
class Bottleneck(nn.Module): | ||
def __init__(self, in_planes, growth_rate): | ||
super(Bottleneck, self).__init__() | ||
self.bn1 = nn.BatchNorm2d(in_planes) | ||
self.conv1 = nn.Conv2d(in_planes, 4*growth_rate, kernel_size=1, bias=False) | ||
self.bn2 = nn.BatchNorm2d(4*growth_rate) | ||
self.conv2 = nn.Conv2d(4*growth_rate, growth_rate, kernel_size=3, padding=1, bias=False) | ||
|
||
def forward(self, x): | ||
out = self.conv1(F.relu(self.bn1(x))) | ||
out = self.conv2(F.relu(self.bn2(out))) | ||
out = torch.cat([out,x], 1) | ||
return out | ||
|
||
|
||
class Transition(nn.Module): | ||
def __init__(self, in_planes, out_planes): | ||
super(Transition, self).__init__() | ||
self.bn = nn.BatchNorm2d(in_planes) | ||
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False) | ||
|
||
def forward(self, x): | ||
out = self.conv(F.relu(self.bn(x))) | ||
out = F.avg_pool2d(out, 2) | ||
return out | ||
|
||
|
||
class DenseNet(nn.Module): | ||
def __init__(self, block, nblocks, growth_rate=12, reduction=0.5, num_classes=10): | ||
super(DenseNet, self).__init__() | ||
self.growth_rate = growth_rate | ||
|
||
num_planes = 2*growth_rate | ||
self.conv1 = nn.Conv2d(3, num_planes, kernel_size=3, padding=1, bias=False) | ||
|
||
self.dense1 = self._make_dense_layers(block, num_planes, nblocks[0]) | ||
num_planes += nblocks[0]*growth_rate | ||
out_planes = int(math.floor(num_planes*reduction)) | ||
self.trans1 = Transition(num_planes, out_planes) | ||
num_planes = out_planes | ||
|
||
self.dense2 = self._make_dense_layers(block, num_planes, nblocks[1]) | ||
num_planes += nblocks[1]*growth_rate | ||
out_planes = int(math.floor(num_planes*reduction)) | ||
self.trans2 = Transition(num_planes, out_planes) | ||
num_planes = out_planes | ||
|
||
self.dense3 = self._make_dense_layers(block, num_planes, nblocks[2]) | ||
num_planes += nblocks[2]*growth_rate | ||
out_planes = int(math.floor(num_planes*reduction)) | ||
self.trans3 = Transition(num_planes, out_planes) | ||
num_planes = out_planes | ||
|
||
self.dense4 = self._make_dense_layers(block, num_planes, nblocks[3]) | ||
num_planes += nblocks[3]*growth_rate | ||
|
||
self.bn = nn.BatchNorm2d(num_planes) | ||
self.linear = nn.Linear(num_planes, num_classes) | ||
|
||
def _make_dense_layers(self, block, in_planes, nblock): | ||
layers = [] | ||
for i in range(nblock): | ||
layers.append(block(in_planes, self.growth_rate)) | ||
in_planes += self.growth_rate | ||
return nn.Sequential(*layers) | ||
|
||
def forward(self, x): | ||
out = self.conv1(x) | ||
out = self.trans1(self.dense1(out)) | ||
out = self.trans2(self.dense2(out)) | ||
out = self.trans3(self.dense3(out)) | ||
out = self.dense4(out) | ||
out = F.avg_pool2d(F.relu(self.bn(out)), 4) | ||
out = out.view(out.size(0), -1) | ||
out = self.linear(out) | ||
return out | ||
|
||
def DenseNet121(): | ||
return DenseNet(Bottleneck, [6,12,24,16], growth_rate=32) | ||
|
||
def DenseNet169(): | ||
return DenseNet(Bottleneck, [6,12,32,32], growth_rate=32) | ||
|
||
def DenseNet201(): | ||
return DenseNet(Bottleneck, [6,12,48,32], growth_rate=32) | ||
|
||
def DenseNet161(): | ||
return DenseNet(Bottleneck, [6,12,36,24], growth_rate=48) | ||
|
||
def densenet_cifar(): | ||
return DenseNet(Bottleneck, [6,12,24,16], growth_rate=12) | ||
|
||
def test(): | ||
net = densenet_cifar() | ||
x = torch.randn(1,3,32,32) | ||
y = net(x) | ||
print(y) | ||
|
||
# test() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
'''Dual Path Networks in PyTorch.''' | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
|
||
class Bottleneck(nn.Module): | ||
def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): | ||
super(Bottleneck, self).__init__() | ||
self.out_planes = out_planes | ||
self.dense_depth = dense_depth | ||
|
||
self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) | ||
self.bn1 = nn.BatchNorm2d(in_planes) | ||
self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) | ||
self.bn2 = nn.BatchNorm2d(in_planes) | ||
self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False) | ||
self.bn3 = nn.BatchNorm2d(out_planes+dense_depth) | ||
|
||
self.shortcut = nn.Sequential() | ||
if first_layer: | ||
self.shortcut = nn.Sequential( | ||
nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False), | ||
nn.BatchNorm2d(out_planes+dense_depth) | ||
) | ||
|
||
def forward(self, x): | ||
out = F.relu(self.bn1(self.conv1(x))) | ||
out = F.relu(self.bn2(self.conv2(out))) | ||
out = self.bn3(self.conv3(out)) | ||
x = self.shortcut(x) | ||
d = self.out_planes | ||
out = torch.cat([x[:,:d,:,:]+out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1) | ||
out = F.relu(out) | ||
return out | ||
|
||
|
||
class DPN(nn.Module): | ||
def __init__(self, cfg): | ||
super(DPN, self).__init__() | ||
in_planes, out_planes = cfg['in_planes'], cfg['out_planes'] | ||
num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth'] | ||
|
||
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) | ||
self.bn1 = nn.BatchNorm2d(64) | ||
self.last_planes = 64 | ||
self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1) | ||
self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2) | ||
self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2) | ||
self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2) | ||
self.linear = nn.Linear(out_planes[3]+(num_blocks[3]+1)*dense_depth[3], 10) | ||
|
||
def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride): | ||
strides = [stride] + [1]*(num_blocks-1) | ||
layers = [] | ||
for i,stride in enumerate(strides): | ||
layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0)) | ||
self.last_planes = out_planes + (i+2) * dense_depth | ||
return nn.Sequential(*layers) | ||
|
||
def forward(self, x): | ||
out = F.relu(self.bn1(self.conv1(x))) | ||
out = self.layer1(out) | ||
out = self.layer2(out) | ||
out = self.layer3(out) | ||
out = self.layer4(out) | ||
out = F.avg_pool2d(out, 4) | ||
out = out.view(out.size(0), -1) | ||
out = self.linear(out) | ||
return out | ||
|
||
|
||
def DPN26(): | ||
cfg = { | ||
'in_planes': (96,192,384,768), | ||
'out_planes': (256,512,1024,2048), | ||
'num_blocks': (2,2,2,2), | ||
'dense_depth': (16,32,24,128) | ||
} | ||
return DPN(cfg) | ||
|
||
def DPN92(): | ||
cfg = { | ||
'in_planes': (96,192,384,768), | ||
'out_planes': (256,512,1024,2048), | ||
'num_blocks': (3,4,20,3), | ||
'dense_depth': (16,32,24,128) | ||
} | ||
return DPN(cfg) | ||
|
||
|
||
def test(): | ||
net = DPN92() | ||
x = torch.randn(1,3,32,32) | ||
y = net(x) | ||
print(y) | ||
|
||
# test() |
Oops, something went wrong.