Skip to content

jhyuklee/namegen-tensorflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Name-generation

Repository for Generative model for names of Olympic Name Dataset Created at March 2, 2017 Korea Unviversity, Data-Mining Lab

Tensorflow Implementation for Name-GAN(Generative Adversarial Network).

Requirements

Take a look at the installation instruction for details about installation.

# Install Tensorflow GPU version
$ sudo apt-get install python-pip python-dev
$ pip install tensorflow-gpu

# If the code above doesn't work, try
$ sudo -H pip install tensorflow-gpu
$ sudo pip install --upgrade

Directories

  • utils.py : Progress bar function
  • model.py : GAN(encoder+decoder+generator+discriminator model) + load + save
  • ops.py : Basic functions for rnn, lstm, feed-forward neural network, dropout
  • dataset.py : Crawling name dataset and train the autoencoder(encoder + decoder) model
  • main.py : Training script for the GAN model (requires pretrained autoencoder model from dataset.py)

Modules

alt_tag alt_tag

  • Each name string will be represented into an encoded vector consisted of (h+c)
  • h : LSTM's hidden state
  • C : LSTM's output state

1. Encoder

  • Encodes the given string value into a hidden vector h
  • Output of the model = (2 x cell-dim) = (LSTM's h) + (LSTM's c)
Division representation specifics
input x character-level embedding of name strings
output h vector-level representation of name strings
model RNN input-size * time-step -> (2 x cell-dim)

2. Decoder

  • Decodes the given hidden vector into an approximated string value x-hat
  • Output of the model will (time_steps x input_dim)
Division representation specifics
input h vector-level representation of name strings
output x-hat near-value reconstruction of 'x'
model RNN (cell-dim) -> input-size * time-step

3. Generator (G)

  • Generates a fake hidden vector representing a name string
  • Output of the model = (2 x cell-dim) = (LSTM's h) + (LSTM's c)
Division representation specifics
input Zc Random input vector with class info
output Xc Generated name hidden vectors
model Linear (z_dim + class_dim) => (cell_dim * 2)

4. Discriminator (D)

  • Binary classification. Define whether the given input is fake or not.
Division representation specifics
input Xc Hidden vector for name-class representation
output Pc Probabilities whether the input is fake or not
model Linear (cell_dim * 2 + class_dim) => p

About

Draft implementation of conditional name generation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages