Skip to content

jdetras/autoencoder_hyperspec_ref

 
 

Repository files navigation

Autoencoder Trainer Overview

  • This project includes a Python implementation of an autoencoder model to reduce dimensionality of hyperspectral leaf reflectance data.
  • The model is designed to preprocess the data, build an autoencoder model, and train it with a sample dataset.
  • Cite: Tross MC, Grzybowski MW, Jubery TZ, Grove RJ, Nishimwe AV, Torres-Rodriguez JV, Guangchao S, Ganapathysubramanian B, Yufeng G, Schnable JC (2023) Data driven discovery and quantification of hyperspectral leaf reflectance phenotypes across a maize diversity panel. bioRxiv doi: 10.1101/2023.12.15.571950

Getting Started Prerequisites

  • Python 3.x
  • Pip package manager

Installation

  1. Clone the Repository

  2. Set Up a Virtual Environment (Optional but recommended)

    • For Windows:

      python -m venv venv

      .\venv\Scripts\activate

    • For Unix or MacOS:

      python3 -m venv venv

      source venv/bin/activate

  3. Install Required Packages

    • Execute the command:

      pip install -r requirements.txt

  4. Install Your Package (Optional if you want to use it as a package)

    • Use this command:

      python setup.py install

Training the Model

* Prepare Your Dataset
    * Place your dataset in the sample_data folder.
    * Ensure it is in the correct format as expected by the AutoencoderTrainer.

* Run the Training Script
    * Run the training script with default parameters or provide custom values.
        python scripts/train_autoencoder.py --dataset sample_data/sampledData_maize2020.csv.gz

* To see all available command-line options:
python scripts/train_autoencoder.py --help

Testing

* Run the test suite to ensure everything is set up correctly:
    python -m unittest

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 86.5%
  • R 13.5%