Skip to content

A webscraper for the movie websites boxofficemojo.com and the-numbers.com

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

jacobkap/boxoffice

Repository files navigation

CRAN_Status_Badge Travis-CI Build Status AppVeyor Build Status Coverage status

Overview

The goal of boxoffice is to scrape movie data to get information about daily box office results of movies and top grossing movies. It scrapes the webpages of https://www.the-numbers.com/ for this information.

Installation

To install this package, use the code
install.packages("boxoffice")


# The development version is available on Github.
# install.packages("devtools")
devtools::install_github("jacobkap/boxoffice")

Usage

The boxoffice() function gets daily boxoffice information. In essence, it shows how well each movie performed on that day.

The data it returns are the following:

  1. Movie name
  2. The studio that produced that movie
  3. The daily gross
  4. Daily percent change in gross
  5. Number of theaters it is playing in
  6. Average gross per theater (result of 4 / result of 5)
  7. Gross-to-date
  8. How many days the movie has been in theaters
  9. The date of the data
movies <- boxoffice::boxoffice(date = as.Date("2015-10-31"))
head(movies)
##                   movie   distributor   gross percent_change theaters
## 1           The Martian  20th Century 4564809             31     3218
## 2       Bridge of Spies   Walt Disney 3588796             45     2873
## 3            Goosebumps Sony Pictures 3326075              9     3618
## 4 The Last Witch Hunter     Lionsgate 2023321             36     3082
## 5  Hotel Transylvania 2 Sony Pictures 1905762              7     2962
## 6                 Burnt Weinstein Co. 1733927             -5     3003
##   per_theater total_gross days       date
## 1        1419   179446657   30 2015-10-31
## 2        1249    43200132   16 2015-10-31
## 3         919    53277832   16 2015-10-31
## 4         656    17377961    9 2015-10-31
## 5         643   153858782   37 2015-10-31
## 6         577     3563747    2 2015-10-31

The top_grossing() function gets the

  1. Movie name
  2. Year released
  3. Total domestic (American market) sales
  4. Total international sales
  5. Total sales (domestic + international)
movies <- boxoffice::top_grossing()
## Please note that these numbers are not adjusted for inflation.
head(movies)
##   rank                                movie year_released
## 1    1 Star Wars Ep. VII: The Force Awakens          2015
## 2    2                    Avengers: Endgame          2019
## 3    3                               Avatar          2009
## 4    4                        Black Panther          2018
## 5    5               Avengers: Infinity War          2018
## 6    6                              Titanic          1997
##   american_box_office international_box_office total_box_office
## 1           936662225               1131561399       2068223624
## 2           858373000               1939427564       2797800564
## 3           760507625               2029197650       2789705275
## 4           700059566                646853595       1346913161
## 5           678815482               1369544272       2048359754
## 6           659363944               1548844451       2208208395

About

A webscraper for the movie websites boxofficemojo.com and the-numbers.com

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages